Neurotoxic assay with behavioral tests in animal model

« Learning and memory
« Recognition
« Social behavior
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Tumor volume changes Survival rates

**Animal model >>> Cognitive, Social, Sensorimotor...

Morris water maze

Passive avoidance task
Y-maze test

Novel object recognition test
Water finding test
Conditioned fear learning test

Three chamber test — Social :
General sociability

Cognitive: <
Learning and memory




M orris water maze

« Established in 1981 by Richard G Morris (neuroscientist)
» Hippocampal-dependent learning - acquisition of spatial memory and long-term spatial memory
 Neurobiology and neuropharmacology of spatial learning and memory

* Neurocognitive disorders such as Alzheimer’s disease

* Observing the subject’s ability to find a hidden platform in an opaque water tank

Normal Mice

Mice with Increased Neurogenesis

Find hidden platform immediately

Wander around before finding platform
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J. Vis. Exp. (53), €2920, doi:10.3791/2920 (2011).

http://www.jove.com/video/2920
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Methodological considerations

Animals Collected parameters for analysis

* Sex differences i
* Distance moved

Male vs Female .
* Mean velocity

Sex hormones (Testosterone, Estradiol..)

. L * Time in each quadrant
» Species and strain differences

» Percent time in each quadrant
Mouse vs Rat £ lat

. * Scape latenc
Between strains P y
Differences in MWM learning ability

Age - Age-related decline in spatial learning abilities

*  Thigmotaxis

* Nutrition
e Stress and infection

Applications 0
-
» Assessment of models for neurocognitive disorders " & 1
Cerebral vascular disease
Neurotrauma . =

Developmental disorders \ 3
Metabolic disorders with cognitive complications : ‘

Alzheimer’s disease

AIDS dementia complex . ‘
Miscellaneous disorders with cognitive complications

» Behavioral, pharmacological, neurosurgical interventions



Procedure

Visible platform Hidden platform
[;)J : Camera\‘ Quadrants

2N

Hidden platform
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Pool filled with water ®

« To assess nonspatial learning (independent of hippocampal function) ~ * Place navigation > Learn to swim from any starting position

* Acquiring a long-term memory of the platform’s spatial location
* To rule out the possibility that the spatial learning deficits detected

might actually be a product of deficient escape motivation or * Platform is rendered invisible by rendering the water opaque

impairment of vision and/or motor skills * Time elapsed and/or the distance traversed to reach the hidden platform

« The platform location is indicated by a marker rising above the water ~ * Various objects or geometric images are often placed in the testing

(Visual cues) room or hung on the wall

» Animals can use these visual cues as a means of navigating in the Maze

* Each subsequent entry - More efficient at locating the platform



Probe test
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Reference memory test

Working memory test

* Animal’s tendency to persist around the platform’s previous location
* “Measure of retention”
* Hidden Platform test
- Removal of platform from the pool to measure spatial bias
* By measuring the time and distance traveled in each of the four quadrants
* Percentage of the total time elapsed

*Last learning trial > Probe trial

« Cannot differentiate between short- and long-term memory

*Long interval between the last training trial and probe trail
>>> Independent of memory of the last training

«Platform is relocated every day and animal is given two trials
*Trial 1 (sample) ---interval--- Trial 2 (test)
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J. Vis. Exp. (53), €2920, doi:10.3791/2920 (2011).

Figure 3. Representative results for the Morris Water Maze. The 7-month APP23 transgenic mice carrying human Swedish mutant APP gene
were tested after one month of daily VPA (n=30 mice) or vehicle solution (n=30 mice) injections. (A) During the first day of visible platform tests,
the VPA treated and control APP23 mice exhibited a similar latency to escape onto the visible platform. P>0.05 by student’s t-test. (B) The VPA-
treated and control APP23 mice had similar swimming distances before escaping onto the visible platform in the visible platform test. P>0.05 by
student’s t-test. (C) In hidden platform tests, VPA treated APP23 mice showed a shorter latency to escape onto the hidden platform on the 3
and 4" day, P<0.001 by ANOVA. (D) The VPA-treated APP23 mice had a shorter swimming length before escaping onto the hidden platform on
the 3 and 4™ day, P< 0.01 by ANOVA. (E) In the probe trial on the 6th day, the VPA-treated APP23 mice traveled into the third quadrant, where
the hidden platform was previously placed, significantly more times than controls. * P<0.005 by student's t-test. (Adapted and reprinted from

The Journal of Experimental Medicine 205, 2781-2789, 2008, Rockefeller University Press, Criginally published in J. Exp. Med. doi:10.1084/
jem.20081588.) (6).



Passive avoidance task

Passive Avoidance

Stqp-Through Step-Down
Passive Avoidance Passive Avoidance

Train | Train

Test: Test:
measure time to step through measure time to step down

* An aversive (emotional) conditioning paradigm
* Subject learns to associate a particular context with the occurrence of an aversive event
(e.g., an electrical shock, the unconditioned stimulus)
Defined as the suppression of the innate preference for the dark compartment of the test apparatus
(or stepping down from an elevated platform) following exposure to an inescapable shock



Procedure and experimental parameters

Passive avoidance training Retention test

Door
opened

Door

Dark comp. entry and closing of door opened

Dark comp. entry

m 0 - 300/600 s

0 - 300/600 s

Retention
latency

A time

(24 h)

|‘ raining latency

Bright comp. time Dark comp. tims{

Procedure Steps:o

Training Triak
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The testing apparatus is a trough-shaped alley divided into two distinct compartments
that are separated by a sliding door. The white, brightly lit compartment s free of
aversive stimulation whereas the black, dark compartment is equipped with shock
capability. The apparatus is cleaned with 70% ethanol before use.

The training trial begins by placing the animal in the white compartment facing the door.
The door is opened to allow access to the dark compartment.

The latency to enter the dark compartment is recorded.

When the animal steps into the dark compartment with all four paws, the door is closed
and a 1-2 second foatshock is delivered (0.2-0.5 mA shock, minimum required to elicit
flinching andor vocalization).

The animal remains in the dark compartment for an additional 10 seconds after the
termination of the aversive stimulus, before being removed and placed back into its
home cage.

. The apparatus is cleaned with 70% ethanol in between animals.

Testing Trial:

~

At the time of the testing trial (usually 1-7 days after training), the animal is again placed
inside the white compartment and the door is raised to allow access to the dark
compartment. «

The latency to re-enter the dark compartment is recorded; however, there is no aversive
stimulus applied to animal upon re-entry into the dark compartment during testing }

Housing

Transfer to the experimental room
Handling

Timing of drug treatment

Pre-experimental procedures

Timing of retention testing (short-term & long term)
Current

Experimental pr r . N
el A felec B e Waiting/delaying time before access to the dark compartment

Delay between dark compartment entry and US exposure to avoid escaping the bright compartment

Transfer latencies detection

Total time spent per compartment
US response assessment

Activity measurements

Time of testing

Experimental parameters




The animal’s fitness is described by
maze test Total track length
Average velocity
Latency for each zone’s first

* Working memory is a system for temporarily storing and managing the visit
information r_eqmred to carry out complex cognltlve tasks Parameters are calculated for each
such as learning, reasoning , and comprehension maze arm -
Latency till first visit
Total number of visits
« Spatial working memory was assessed by spontaneous alternation behavior in y maze it Summed up duration of all
Percentage of duration
* Behavioral test for measuring the willingness of rodents to explore new environments Percentage of counted visits

* Brain- hippocampus, septum, basal forebrain, and prefrontal cortex--are involved in this task.

* Y-shaped maze with three white, opaque plastic arms at a 120° angle from each other.
3Becmx7cmx10cm (Lx HxXW)

« After introduction to the center of the maze, the animal is allowed to freely explore the three arms.

 An entry occurs when all four limbs are within the arm.

| S| o ior | % | O | i [ ||
https://youtu.be/WNx72ebsNLE
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Alternate Arm Returns (AAR)

BBABABACABCB

Same Arm Returns (SAR) Spontaneous Alteration Performance (SAP)

**AAR, SAR 2 Memory impairment

A 3 months B 6 months
Contents lists available at ScienceDirect
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Neuroscience Letters 2015, 587, 126-131

* DAL : Dominant-negative mutant of ALDH2 (HNE detoxification)

» APP : Human amyloid precursor protein >>> AD model

« APP/DAL

» Oxidative stress - Spatial learning and memory impairments in APP mice with aging



N ovel object recognition test

;ormal rodent

PCP-treated rodent

PCP-treated rodent
with drug

Acquisition

5. . 8

5. 8

5. 8

Retention

88

Explore both objects

"
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Reverse PCP-induced NOR deficit?

External motivation, reward, training, punishment X

Short-, intermediate-, long-term memory

Familiarization session - Interval - Test session

*Based on the innate preference of rodent

—> To explore the novel object rather than the familiar one

Schizophrenia
PCP(Phencyclidine)
NMDAR non-competitive antagonist

*Rodent that remembers the familiar object will spend more time exploring the novel object



A Very Good
NOR Setup

A Very Bad
NOR Setup

@ Pretty Big
@ Cannot be

/ Sat On

Q Distracted

@ Intervested
€ o Simple
€ Can be Sat On

Directing the nose
+

At a distance less than or equal to 2 cm
N%

Sniffed the object

or touched the object while looking at it
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Conditioned fear learning test

Context conditioning

Unsignalled

o

Signalled

Fear %
I edar %‘i




Conditioned-fear learning test of Tg2576 mice

FASEB Journal, 2007, 21, 2135-2148

A 13 Months Old B 13 Months Old
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Non-tg, nontransgenic mice
Tg2576, APP transgenic mice
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Three chamber test

o

[] Novel object [ Novel object
0075 [ Centre chamber 4007 ] Novel mouse
s 1 Novel mouse P
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Nature reviews: Neuroscience, 2010, 11, 490-502

« Alterations in social behavior - symptom of several neuropsychiatric and neurologic disease
« To measure social approach behavior
Mouse —> into the middle chamber and allowed to explore the other compartments.
Docile stimulus mouse is situated in a mesh-wire container,
Adjacent compartment a similar container is located without stimulus mouse (object compartment)
The tendency to approach or avoid the compartment with the stimulus
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Abnormal mGluR-mediated synaptic plasticity and

autism-like behaviours in GpraspZ2 mutant mice
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Gprasp : G-protein-coupled receptor

associated sorting proteins

* interact and regulate trafficking of GPCRs :
delta opioid receptor, D2 dopamine receptor,
muscarinic receptors, and mGluR1 and
mGIuR5 receptors

Gprasp2

* GPRASP2 mutations in autism and
schizophrenia patients

* downregulation of this gene autism patients

(1) (2) (3) (4)

Agonist

Y
ATP
l ADP

Signaling

o Pepm

Color version available online



GPRASP2 ChrX: 102,712,176-102,717,732

Start codon Stop codon
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Fig. 1 Gprasp2 knockout mice display structural alterations in hippocampal neurons.
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RESEARCH ARTICLE SUMMARY

NEUROSCIENCE

Synaptotagmin-3 drives AMPA
receptor endocytosis, depression of
synapse strength, and forgetting

Ankit Awasthi*, Binu Ramachandran®, Saheeb Ahmed, Eva Benito, Yo Shinoda,
Noam Nitzan, Alina Heukamp, Sabine Rannio, Henrik Martens, Jonas Barth,
Katja Burk, Yu Tian Wang, Andre Fischer, Camin Deant




N Synaptotagmin

>=<. SNARE Complex

/— Clathrin

Q@ AP-2 Complex

Linker

e 2+
Synaptic Ca
vesicle
Exocytosis

.‘;.4‘0'-’7" )
Endocytosis

L g
Presynaptic -

membrane gfé

ATRL)
i)
Corogeas

Nat Commun. 2014 Dec 15;5:5859.



>

>

150 ¢ 100
3 g
guool | M L
[2) ,gSO-W Wt W g -oq:)
T s . B
25 50 75 100 125 150 25 50 75 100 125 150 = -
time (sec) time (sec) 8
B 450 * 75 * o
, 3 I 8 2
] 5 8
! giso-w 8 25
» 8 | A e, 3
120 = Sz T
e e e e e e P A T
- e time (sec) time (sec) ‘
225 150 ‘
% ’(5“\ 150 l + bafilomycin
& 150+ @ 100+ 1004 —
c o 75 100 125 150
2 )
ie @
75+ O 50+
o
= S
G 1 ) ) 1 ) 1 0 T T T T T 1
0 25 50 75 100 125 150 0 25 50 75 100 125 150
—_ time (sec) time (sec)

Mol Biol Cell. 2012 May;23(9):1715-27



A Wt KO Wt KO B

70 KD- | s f—
55 kD-| "%

25 kD-

Syt3NB  Syt3NT

Tubulin |—_| I.——I

Fig. 1. Syt3 is postsynaptic.

Syt3 NT|= .. e




A B
5 L 2 L — .
; 0s - os| - 100's

NH4Cl NHaCl
1401\ \1PA NHaCI 1407 AMPA i 1401NMDA :
<1201y ! <120focazs 2mmcazs =120 \
9100 <100 2100
2 80, £ 80/ 2 80
S 609 T 607 % 60
£ 401 £ 40 € a0
20 20 20
0 . . . 0 50 100 0
0 100 200 300 time (s) 0 100 200 300
time (s) time (s)
C internalized GFP-Syt3 surface GFP-Syt3 merge

control

AMPA

NMDA

Fig. 2. Syt3 endocytoses in response to stimulation and binds GIuA2, AP-2, and BRAG2

—~120
o
22100

intensity

N
o
1

internal/ surface Syt3

o
o

1401

80-
60-
404

—_
(6}
1

—_
o
1

e
(6}
1

NMDA NHacl
!

0CaZ+ 2mM Ca2+

0 50 100
time (s)

Q
Q
o

A
S



D Homer-GFP /CLC-DsRed GFP-Syt3 / CLC-DsRed GFP-Syt3 / Homer-myc

- "

Homer-GFPb

Tat-GluA2-3Y : inhibits protein

CLC-DsRed CLC-DsRed Homer-myc binding to the .GI.UAZ 3Y region
and blocks activity dependent
E s oo F endocytosis of receptors
L &
Glua1 T AP-2 NSF BRAG2 GRIP and PICK1
Giuao GIuA2 C-tail ¥ v v
—EFCYFSRANINPSSSQNSQNFAT N 8 ESVKI
e —erovrsr SRR REEAE 5]
GluN1 |
GIUN2A | . o
G & Q’g H il
GABA , Ro1 [s= > O N\
A Q 3 O A\ N N
GRIP |#= GluA2 ) GIUA2 | e ~— |
Pick1 [\ AP2 | e Tat-GluA2-3Y: -  +
BRAG2 | S BRAG2 | i =

Fig. 2. Syt3 endocytoses in response to stimulation and binds GluA2, AP-2, and BRAG2
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Fig. 5. Syt3 knockout mice learn as well as wild-type mice but have impaired forgetting.
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Fig. 5. Syt3 knockout mice learn as well as wild-type mice but have impaired forgetting.
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Syt3 knockout mice do not forget. Both wild-type mice and Syt3 knockout mice can learn an
escape position in the water maze, in which corresponding synapses are strengthened through the
increase of AMPA receptors. These synapses are weakened by the removal of receptors if the
memory is no longer needed—for example, when a new escape position is learned. Syt3 knockout
mice cannot remove receptors and therefore cannot forget previous escape positions.



