
     Symmetries in Classical Physics

 If the Lagrangian ( , ) is invariant under displacement, the canonica

Chapter 4 Symmetry in Quantum Mechanics
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A symmetry is a physical operation that leaves the physics unchanged.

As an example, we consider a free particles, 
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Symmetry in quantum mechanics
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Given a symmetry operation is described by a unitary operator U,

this is a symmetry of the Hamiltonian if H is unchanged by the action of U.

Namely,   + =

Continuous symmetries and conservation laws
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S S   , =0.

 Continuous symmetry if the symmetry transformation can be continuously built up

as a series of infinitesimal transformations starting from the identity operator.

e.g. translation and rota

U ⇔  
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 Discrete symmetries if symmetries cannot be built up in this way

e.g. parity
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mechanics, there is a corresponding conserved quantity. Conversely, if some observable 
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When , 0,  , 0.

A ket '  is an G eigenket.

Suppose at  the system is in an eigenstate of G, then the ket at a later time
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 Exampe) Suppose the Hamiltonian is rotationally invariant, so
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D D as the same energy.

 (2 +1)-fold degeneracy= the number of possible -values

 An atomic electron having potential ( ) ( )  has a (2 +1)-fold

degeneracy for each atomic level because  and  are
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invariant. 

Applying an external electric or magnetic field leads to a breaking

of the rotational symmetry; as a result, the (2 +1) fold degeneracy is lifted.j −



    

 The parity operation (space inversion), applied to transformtion on the coordinate

system, changes a right-handed system into a left-handed syst

4.2 Discrete symmetries, parity, or space inversion
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 Given , a space-inverted state is obtained by applying a parity operator :
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 How does an eigenstate of the position operator transform under parity ?

                           ' =e ' .

Proof)     ' ' ( ') ' .

 '  is an eigenket of  with eigenvalue -x'.  So it must

iδ

= − = −



x -x

x x x x x x

x x

π

π π π
π

2 2

1

 be the same as a position

eigenket '  up to a phase factor. 

 Taking e 1 by convention,

' = ' ;  hence 1.  

 is not only unitary but also Hermitian;   with eigenvalue 1.

iδ

− +

=

=

= = ±



-x

x x           π π
π π π π



 What about the momentum operator ?  

Intuitively,  is expected to be odd under parity.

More sophicated argument: Translation followed by parity is equivalent to parity followed 
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(parity) (rotation)

 The behavior of  under parity

  For orbital angular momentum, , =0  

because  and both and are odd under parity
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spin operator  given by  must be even under parity,

transforming in the same way as .
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2 2 Scalar that is invariant under rotations and even under parity such as  and 

 Pseudoscalar that is invariant under rotations, but odd under parity
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odd under parity are called polar vectors.

 For example)  and 

Vectors that are even under parity are called axial vectors.
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The wave function of the space-inverted state is
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The momentum eigenket is not a parity eigenket since , 0.

As an example, consider the free particle 
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The plane wave is the wave function for a momentum eigenket:
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An eigenstate of orbital angular momentum is a parity eigenstate since , 0.

Let's examine the properties of L  and L  wave function under the space inversion,
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=0 ( , ) is constant, meaning that , 0, 0 = , 0, 0 .

3 3
=1    ( , )  sin  sin( - )

8 8

l

i i

lm lm

l

l

l Y l m l m

l Y e eφ π

α α

θ φ α α

θ φ θ π θ
π π

+

∴ −

= = = =

= →

Example

π

π

)

1
1

2 2 2 2 2 ( ) 2 2
2

3
sin

8
 ( , ) transforms like x+iy. Because vectors are odd under parity,

     , 1, 1 = , 1, 1 . 

15 3 15
=2    ( , )  sin  sin ( - )  sin

32 8 32

i

i i i

e

Y

l m l m

l Y e e e

φ φ

φ π φ φ

θ
π

θ φ
α α

θ φ θ π θ θ
π π π

+

= −

→

= = = =

= → =

π −



( )

 Suppose  , 0
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) Consider the hydrogen atom in nonrelativistic quantum mechanics.

As the energy depends only on the prinicipal quantum number  and 2  and 2  states
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Example : Infinite well potential
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The Hamiltonian is invariant under parity. The two lowest lying states are

called the symmetrical state  and the antisymmetric state .  They are

simultaneous eigenke
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Symmetrical double - well potential
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An oscillation between  and  with angular frequency = .
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even though they are not parity eigenkets.

A ground state is asymmetrical despite the fact that the Hamiltonian itself is symmetrical

under space inversion. This is an example of broken symmetry and degeneracy.
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The example of the symmetrical double well is an ammonia molecule, NH .

The up and down positions for the N atom are analogous to R and L. 

The parity and energy eigenstates are superpositions of the up and down positions.

The energy difference between the simultaneous eigenstates of energy and parity

correspond to an oscillation frequency of 24,000 MHz ( ~ 1 cm). 

        

Optical isomers (sugar or ami

λ

4 6

no acids) are of the R-type (or L-type) only.

In many cases, the oscillation time is an order of 10 -10  years. The R-type

molecules remain right-handed for all practical purposed.
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 place between states of opposite parity as a consequence

of multipole expansion (Laporte's rule).

 

The Hamiltonian for the weak interaction is not invariant under parity.

Because 

Parity Nonconservation

parity is not conserved in weak interactions, "pure" nuclear and

atomic states are parity mixtures. 


	슬라이드 번호 1
	슬라이드 번호 2
	슬라이드 번호 3
	슬라이드 번호 4
	슬라이드 번호 5
	슬라이드 번호 6
	슬라이드 번호 7
	슬라이드 번호 8
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	슬라이드 번호 24
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	슬라이드 번호 31
	슬라이드 번호 32
	슬라이드 번호 33
	슬라이드 번호 34
	슬라이드 번호 35
	슬라이드 번호 36
	슬라이드 번호 37
	슬라이드 번호 38
	슬라이드 번호 39
	슬라이드 번호 40
	슬라이드 번호 41
	슬라이드 번호 42
	슬라이드 번호 43
	슬라이드 번호 44
	슬라이드 번호 45
	슬라이드 번호 46
	슬라이드 번호 47
	슬라이드 번호 48
	슬라이드 번호 49
	슬라이드 번호 50
	슬라이드 번호 51
	슬라이드 번호 52
	슬라이드 번호 53
	슬라이드 번호 54
	슬라이드 번호 55
	슬라이드 번호 56
	슬라이드 번호 57

