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Differential Evolution with Neighborhood
Mutation for Multimodal Optimization

B. Y. Qu, P. N. Suganthan, Senior Member, IEEE, and J. J. Liang

Abstract—In this paper, a neighborhood mutation strategy is
proposed and integrated with various niching differential evolu-
tion (DE) algorithms to solve multimodal optimization problems.
Although variants of DE are highly effective in locating a single
global optimum, no DE variant performs competitively when
solving multi-optima problems. In the proposed neighborhood
based differential evolution, the mutation is performed within
each Euclidean neighborhood. The neighborhood mutation is
able to maintain the multiple optima found during the evolution
and evolve toward the respective global/local optimum. To test
the performance of the proposed neighborhood mutation DE, a
total of 29 problem instances are used. The proposed algorithms
are compared with a number of state-of-the-art multimodal
optimization approaches and the experimental results suggest
that although the idea of neighborhood mutation is simple,
it is able to provide better and more consistent performance
over the state-of-the-art multimodal algorithms. In addition, a
comparative survey on niching algorithms and their applications
are also presented.

Index Terms—Crowding, differential evolution, multimodal
optimization, neighborhood mutation, niching algorithm, sharing,
speciation.

I. Introduction

MANY OPTIMIZATION problems contain several high
quality global or local solutions which have to be

identified and the most appropriate solution should be cho-
sen. These problems are known as multimodal optimization
problems. Classical evolutionary algorithms (EAs) were orig-
inally designed to locate single globally optimal solution. To
solve multimodal optimization problems, numerous techniques
commonly known as “niching” methods have been developed
[1]–[5], [89], [90]. A niching method generally modifies the
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behavior of a classical EA in order to maintain multiple groups
within a single population in order to locate multiple optima.
The niching techniques include crowding [6], fitness sharing
[7], restricted tournament selection [8], and speciation [9].
Besides multimodal problems, different niching techniques
are also frequently used to solve multiobjective and dynamic
optimization problems [10].

Differential evolution (DE) is a simple yet powerful global
optimization technique with successful application in various
areas [11], [12]. Unlike other EAs, DE modifies individuals by
using differences of randomly sampled pairs of individual vec-
tors from the population [13]. This mutation method is suitable
for solving single global optimum optimization problems but
is inappropriate for solving multimodal optimization. Various
niching methods are integrated with DE to make it suitable for
multimodal optimization. However, few work focuses on DE’s
mutation operation which is critical for efficiently solving
multimodal optimization problems. Motivated by these obser-
vations, a neighborhood based mutation strategy is proposed
and integrated with different niching DE algorithms. The
method limits the mutation within a number of distance based
neighborhood solutions, thereby making it effective in locating
multiple optima.

Neighborhood concept has been widely used in evolu-
tionary algorithms. Generally, neighborhoods can be divided
into two main categories, namely index-based and distance-
based. In a single global peak optimization scenario, index-
based neighborhood is commonly used, especially in particle
swarm optimization (PSO) [46]. In [47], different topology-
based PSO algorithms were presented and compared. These
topologies are based on the indices of the population. In
2004, Mendes [48] proposed a fully informed PSO, which
also used topologies and index-based neighborhood as the
basic structure. Index-based neighborhood was also adopted
in DE. One of the earliest topological index-based neigh-
borhood DE works was carried out by Tasoulis [51]. The
algorithm divides the population into different subpopulations
and uses ring topology to exchange information between
different subpopulations. The method can be considered as
“discrete” topological populations as each subpopulation runs
as a separated DE in the offspring production phase. This
method was modified and further improved by Weber et al.
[52], [53]. In [49] and [50], Das et al. utilized the concept
of index-based neighborhood of each population member to
improve the performance of DE. The idea is the same of
the community of the PSO algorithms and it balances the
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TABLE I

Taxonomy of Neighborhood Based Evolutionary Algorithms

Global Optimization Multimodal Optimization
Index-Based
Neighborhood

Distance-Based Neighborhood Index-Based
Neighborhood

Distance-Based Neighborhood

Topologies-based PSO [47]
Fully informed particle swarm [48]
Parallel DE [51]
Distributed DE [52], [53]
Global and local neighborhoods DE [49], [50]

DE with proximity-based mutation
operators [54]

Ring topology
PSO [28]

Crowding DE [6]
Sharing DE [6]
Species-based DE [13]
Species-based PSO [28]
Fitness
Species conserving genetic algorithm [18]
Fitness-Euclidean distance ratio PSO [28]
Sharing GA [7]
Clearing GA [17]

exploration and exploitation abilities of DE. This technique
can be viewed as “continuous” topological populations as
there is only one population involved. Compared with the
extensive investigations into index-based neighborhoods, few
works used the concept of distance-based neighborhood for
single global optimum optimization. Recently, Epitropakis
et al. [54] proposed a proximity-based mutation operator
which selects the vectors to perform mutation operation using
a distance related probability.

As, in multimodal optimization, the objective is locat-
ing multiple optima, diversity is one of the major issues.
To maintain high diversity in the population, distance-based
neighborhood is generally used to form different niches in
multimodal optimization. Thomsen [6] proposed the Crowding
DE which limits the competition between nearest (Euclidean
distance) members to maintain the diversity. Species-based
DE (SDE) [13] and speciation PSO (SPSO) [28] which form
species based on Euclidean distance were introduced by Li.
In contrast to the distance based neighborhoods, index-based
neighborhood is only used by Li [28] in ring-topology based
PSO for multi-modal optimization. Table I presents a taxon-
omy based on neighborhoods.

The remainder of this paper is organized as follows.
Section II reviews various multimodal optimization
algorithms. Section III discusses the differential evolution
with niching. Section IV introduces the neighborhood based
differential evolution algorithms. Experimental setup and
numerical results are presented in Sections IV and V while
Section VI concludes this paper.

II. Multimodal Optimization and Niching

Techniques

When an optimization problem requires more than one
optimal solution, it can be considered as a multimodal
optimization problem. The objective of locating different
optima in a single run makes it more complicated than
locating a single global optimal solution. Different niching
methods were introduced to enable EAs to maintain a diverse
population and locate multiple solutions. The concept of
niching is inspired by the way organisms evolve in nature.
When integrated with EAs, niching involves the formation
of subpopulations within a population. Each subpopulation
aims to locate one optimal solution and together the whole
population is expected to locate multiple optimal solutions in

a single run. Various niching methods were proposed in the
literature. Generally, the niching methods can be divided into
two major categories: sequential niching and parallel niching.
Sequential niching generally runs an algorithm iteratively to
obtain multiple optima [20]. As sequential niching methods
are time-consuming and the performance is relatively limited,
we focus on parallel niching methods in this paper. In the
literature, most multimodal evolutionary algorithms adopt
parallel schemes. In the following section, several commonly
used niching methods are briefly introduced.

A. Crowding and Restricted Tournament Selection

Crowding concept is one of the earliest and simplest niching
techniques used to solve multimodal optimization problems.

1) Original Crowding: The crowding method introduced
by De Jong in 1975 [14] allows competition for limited
resources among similar individuals in the population. Hence,
the competition is within each niche. This approach will
maintain the diversity of the whole population. Generally,
the similarity is measured using distance between individuals.
The algorithm compares an offspring with some randomly
sampled individuals from the current population. The most
similar individual will be replaced if the offspring is a superior
solution. A parameter CF called crowding factor is used to
control the size of the sample. CF is generally set to 2 or
3. The computational complexity of crowding is equal to
O(N), where N is the population size. A major advantage
of crowding is its simplicity. However, replacement error is
the main disadvantage of crowding.

2) Deterministic Crowding: Due to the replacement er-
ror, the original crowding had a limited success in solving
multimodal optimization problems [15]. To overcome this
problem, Mahfoud introduced a deterministic crowding as
an improvement to the original crowding [15]. It eliminates
the CF, reduces replacement errors, and restores selection
pressure. The main merit of this method is that no niching
parameter is required. This method also faces the problem of
loss of niches as it also uses localized tournament selection
between similar individuals.

3) Probabilistic Crowding: To prevent the loss of niches
with lower fitness or loss of local optima, Mengshoel [55] pro-
posed probabilistic crowding. This method uses a probabilistic
replacement rule which replaces the lower fitness individuals
by higher fitness individuals in proportion to their finesses. The
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TABLE II

Summary of Different Niching Algorithms

Methods Niching
Parameter

Merits Drawback Complexity Popular Algorithms Applications

Crowding/RTS Crowding
factor/Window
size

Simple and easy to run Replacement
errors/loss of niches

O(N)/O(N × w) Crowding DE [6] [69], [77]

Fitness
sharing

Sharing radius Able to form and main-
tain stable niches

Selection of sharing
radius and computa-
tional expensive

O(N2) Sharing GA [7]
Sharing DE [6]

[75], [82]

Clearing Clearing
radius

Simple and able to pre-
serve good solutions form
good niches

Slow convergence rate
and poor ability to lo-
cate local optima

O(c N) Clearing GA [17] [60]

Speciation Radius High diversity and able to
maintain stable niches

Difficult to select the
radius parameter

Best case-O(N)
Worst case-O(N2)

Species conserving GA
[18]
Species-based DE [13]

[56]

advantage of this technique is the high diversity maintained
by the probabilistic selection. On the other hand, this method
suffers from slow convergence and poor fine searching ability.

4) Restricted Tournament Selection: The restricted tourna-
ment selection (RTS) [8] concept is very similar to crowding.
The algorithm chooses a random sample of w (window size)
individuals from the population and determines which one
is the nearest to the offspring, by either Euclidean (for real
variables) or Hamming (for binary variables) distance measure.
The nearest member within the w individuals will compete
with the offspring and the one with higher fitness will survive
in the next generation. The complexity of RTS is O(N × w),
where w is the window size. The advantage of RTS is the
high diversity maintained by the competition between similar
individuals while the disadvantage is the selection of window
size and the replacement error.

B. Fitness Sharing

The fitness sharing was introduced by Holland [16] and
extended by Goldberg and Richardson [7]. The concept is
to divide the population into different subgroups according
to the similarity of the individuals. An individual must share
its information with other individuals within the same niche.
The shared fitness for the ith individual can be represented as
follows:

fshared(i) =
foriginal(i)
N∑

j=1
sh(dij)

(1)

where the sharing function is calculated as

sh(dij) =

⎧⎨
⎩

1 −
(

dij

σshare

)α

, if dij < σshare

0, otherwise.

dij is the distance between individuals i and j, σshare is the
sharing radius, N is the population size, and α is a constant
called sharing level. The complexity of fitness sharing is
O(N2). The advantage of sharing is its ability to form and
maintain stable subpopulation/niches. Sharing also encourages
the search in unexplored regions of the space by increasing the
diversity of the population. One of the drawbacks of sharing is
the usage of the niching parameter σshare. Specifying this pa-
rameter requires prior knowledge of how far apart the optima

are. However, in real world applications, such information is
seldom available. Another disadvantage is the computational
complexity of sharing. Sharing method is computationally
more expensive compared to the other commonly used niching
techniques [85].

C. Clearing

Clearing [17] is another widely used niching method. Differ-
ent from fitness sharing, clearing removes the bad individuals
and keeps only the best individual (or a few top individuals)
within each niche. The algorithm first sorts the population
in descending order according to the fitness values. Then it
picks one individual at a time from the top and removes all
the individuals with worse fitness than the selected one and
falling within the specified clearing radius. This step will be
repeated until all the individuals in the population are either
selected or removed. Clearing eliminates similar individuals
and maintains the diversity among the selected individuals.
Similar to sharing, clearing also needs a user specified pa-
rameter σclear called clearing radius. This parameter is used
as a dissimilarity threshold. The complexity of clearing is
O(cN), where c is the number of niches maintained during
the generations. The advantage of clearing is its simplicity
compared with sharing. Clearing is also able to preserve the
best elements of the niches during the generations. However,
clearing can be slow to converge and may not locate local
optima effectively.

D. Speciation

The idea of speciation is commonly used in multimodal
optimization [9], [18], [19]. This method also depends on a
radius parameter rs, which measures Euclidean distance from
the center of a species to its boundary. The center of a species
is called species seed. Each of the species is built around
the dominating species’ seed. All individuals that fall within
the radius from the species seed are indentified as the same
species. In this way, the whole population is classified into
different groups according to their similarity. The complexity
of speciation is O(N) in the best case and O(N2) in the worst
case. The main advantage of speciation is its ability to maintain
high diversity and stable niches over generations while the
main disadvantage is the selection of the radius parameter rs.
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In order to provide an overview of different niching meth-
ods, Table II summarizes the niching techniques discussed
above. In addition to the methods listed above, there are other
niching methods such as multi-population [39], clustering [21],
and localized niching [22].

E. Applications of Niching Techniques

1) Dynamic Optimization: Niching algorithms are often
used to maintain the diversity of the population and track
moving peaks in dynamic optimization. In [56], Parrott and
Li used the speciation technique to track multiple peaks in
a dynamic environment. Subsequently in 2006, Li et al. [57]
used SPSO to tackle dynamic problem by using detection and
response. The method is designed for solving problems with
primarily unknown numbers of peaks. Lung and Dumitrescu
[58] used crowding DE to maintain diversity and combined it
with PSO, called collaborative evolutionary-swarm optimiza-
tion to solve dynamic optimization problems. In 2009, Lung
and Dumitrescu [59] further improved and extended their work
by introducing one more Crowing DE population that acted
as a memory for the main population. Yu and Suganthan [60]
presented a clearing technique to maintain the diversity of the
archive used in their evolutionary algorithm to solve dynamic
problems.

2) Multiobjective Optimization: Niching techniques are
also commonly used in multiobjective optimization to adjust
the fitness values in order to distribute individuals uniformly
in the objective space [61], [62]. In [63] and [64], crowding
concept is used to maintain diversity. Hiroyasu et al. [65]
introduced the sharing technique into distributed genetic al-
gorithms to increase the diversity of the solutions. Chen and
Hsu [66] proposed a multiobjective optimization solver using
rank-niche evolution strategy. This method also makes use
of sharing concept to maintain uniformly distributed Pareto
front. In 2008, Li et al. [67] introduced an adaptive niche
multiobjective particle swarm optimization algorithm.

3) Solving Real-World Problems: Niching and multimodal
optimization algorithms have been applied to solve problems
in engineering [68], [74]. Zaharie [69] applied crowding dif-
ferential evolution to solve unsupervised clustering problems.
This approach treats the clustering problem as a multimodal
optimization, which is similar to that of unsupervised niche
clustering introduced by Nasraoui et al. [70]. Sheng et al. [77]
used a modified deterministic crowding to solve the clustering
problem. In [78], a niching memetic algorithm is used for
simultaneous clustering and feature selection. Ling et al.
[71] applied crowding differential evolution for solving robust
optimal design problems. The crowding DE concept is used to
solve market-based transmission expansion planning problems
[72], and Nash equilibria detection problems in multiplayer
games [73]. Dileetoso and Salerno [75] used a self-adaptive
niching genetic algorithm for designing of electromagnetic
devices. Perez [76] applied various niching algorithms for
solving job shop scheduling problems. Redondo et al. [79]
applied multimodal evolutionary algorithms for solving the
multiple competitive facilities location and design problem. In
2002, Boughanem and Tamine [80] applied niching technique
for query optimization in document retrieval. Li [81] used

a niching genetic algorithm to discover fuzzy rules. Niching
algorithms and multimodal optimization have also been used
for dangerous areas identification in a grounding system [82].
Beside these, pattern matching and recognition is also a typical
area in which multimodal optimization was used [83], [84].

III. Differential Evolution and Niching

A. Differential Evolution

The DE algorithm was proposed by Storn and Price in
1995 [23] to solve unconstrained single-objective optimization
problems. Although the idea of DE is simple, it is efficient in
solving global optimization problems [24], [45], [88]. DE is
a population-based stochastic global optimization technique.
The four main steps in DE are initialization, mutation, recom-
bination and selection of parents for next generation from the
current parent and offspring. Although different strategies have
been suggested [25], [26], this paper uses DE/rand/1 strategy
represented as follows:

vi = xr1 + F · (xr2 − xr3) (2)

where vi is the mutation vector, r1, r2, r3 are random and
mutually different integers drawn from the set of population
indices, which should also be different from the current target
vector xi. F is a scale factor in [0, 2] used for scaling the
differential vector.

Crossover or recombination is applied after mutation pro-
cess to obtain the trial vector μi,j

ui,j =

{
vi,j, if randj ≤ CR or j = k

Xi,j, otherwise
(3)

where CR is a control parameter of DE that decides in a
comparison with a random number randj in the range [0, 1]
whether components are copied from vi or xi, respectively, into
trial vector ui [27]. The selection process is based on a simple
competition between the corresponding parent and offspring
in the case of single objective global optimization.

B. Differential Evolution for Niching

Several DE-based niching algorithms have been proposed
in the literature to solve multimodal problems [6], [13], [40]–
[44]. Thomsen integrated the fitness sharing concept with
DE to form the sharing DE [6]. Thomsen also proposed to
extend DE with a crowding scheme called crowding DE (CDE)
[6] to allow it to tackle multimodal optimization problems.
CDE which has a crowding factor equal to the population
size has outperformed the sharing DE. In CDE, when an
offspring is generated, it will only compete with the most
similar (measured by Euclidean distance) individual in the
current population. The offspring will replace this individual
if it has a better fitness value. The CDE is summarized in
Table III.

SDE [13] is another commonly used DE niching algorithm.
The concept is the same as speciation described in Section II.
Different niches are formed around the species seed. The
mutation is carried out within each species. The details of
SDE are presented in Table IV.
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TABLE III

Crowding DE (CDE)

Step 1 Randomly generate NP number of initial trial solutions.
Step 2 For i = 1 to NP

Produce an offspring ui using the standard DE.
Calculate the Euclidean distance of ui to the other individuals in
the DE population.
Compare the fitness of ui with the most similar individual and
replace it if the ui has a better fitness value.

Endfor
Step 3 Stop if a termination criterion is satisfied. Otherwise go to Step 2.

TABLE IV

Species-Based DE (SDE)

Step 1 Randomly generate NP number of initial trial solutions.
Step 2 Sort all individuals in descending order of their fitness values.
Step 3 Determine the species seeds for the current population: the most-fit

individual will be set as the first species seed. Then all individuals are
checked in turn from most-fit to least-fit against the species seeds
found so far. If an individual does not fall in the radius of any seeds,
it will be indentified as another species seed.

Step 4 For each species, execute a global DE variant:
4.1 If a species has less than m individuals, then randomly generate

new individuals within the radius of the species seed.
4.2 If the child’s fitness is the same as its species seed, replace this

child with a randomly generated new individual.
Step 5 Keep only the NP fitter individuals from the combined population.
Step 6 Stop if a termination criterion is satisfied. Otherwise go to Step 4.

TABLE V

Modified Fitness Sharing Method

Input: The population with original fitness value
Step 1 Sort the population in descending order of original fitness

While the population is not empty
Step 2 Find the best unprocessed solution in the population and

set it as the new niche center.
Step 3 Identify the solutions within the new niche using the specified niching

radius.
Step 4 Penalize the solutions (except the niche center) within the niche using

the original fitness sharing formula (Section II-B). Note that the best
solution at the current niche center uses the original fitness value.

Step 5 Remove the niche center and the solutions within the niche from the
population.

Endwhile
Output: The population with shared fitness computed using the modified fitness sharing

method.

In this paper, a modified version of fitness sharing DE is
also introduced. The process of calculating the modified shared
fitness and the steps of the modified fitness sharing DE are
presented in Tables V and VI, respectively.

IV. Neighborhood Based Differential Evolution

In the standard DE, the mutation is performed between
randomly picked individuals from the entire population. This
will allow any two members to generate the difference vector
in DE/rand/1, even if the two members are far apart from each
other. This mutation is efficient when searching for single
global solution. It prevents premature local convergence and
ensures global convergence in the final stage as all individuals

in general evolve to one optimal point. However, when solving
a multimodal problem, multiple optima need to be located
simultaneously. If the global version of the mutation is used,
it will not be efficient for multiple localized convergences at
the final search stage as required for multimodal optimization.
At final search stage, the whole population is distributed
around different optimal regions. If the parameter space
distances between different optima are large, efficient
convergence to any of the optima will become impossible as
the difference vectors can be generated using individuals from
different optimal regions with relatively large magnitudes.
Although some of the niching techniques can limit the
mutation within each niche (SDE), they all depend on certain
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TABLE VI

Modified Fitness Sharing DE

Step 1 Randomly initialize the population and external archive. The archive size is
two times of the population size.

Step 2 Modify the fitness value of the solutions in archive using the modified fitness
sharing method (Table V).

Step 3 Sort the solutions in archive in decreasing order of modified fitness.
Step 4 The first NP (population size) solutions in archive are used as parents to

produce offspring using neighborhood mutation.
Step 5 Update the offspring with the nearest (Euclidean distance) member in the

archive.
Step 6 Stop if a termination criterion is met. Otherwise go to Step 2.

TABLE VII

Steps of Generating Offspring Using Neighborhood Mutation

Input A population of solutions of current generation (current parents)
Step 1 For i = 1 to NP (population size)

1.1 Calculate the Euclidean distances between individual i and other
members in the population.

1.2 Select m smallest Euclidean distance members to individual i and
form a subpopulation (subpop) using these m members.

1.3 Produce an offspring ui using DE equations within subpopi, i.e.,
pick r1, r2, r3 from the subpopulation.

2.3 Reset offspring ui within the bounds if any of the dimensions exceed
the bounds.

2.4 Evaluate offspring ui using the fitness function.
Endfor

Step 2 Selection NP fitter solutions for next generation according to the strategies of
different niching algorithm.

Output A population of solutions for next generation

niching parameters such as the species radius. Choosing a
proper niching parameter itself is almost impossible and the
algorithm is greatly affected by the niching parameter.

In [86], Neri and Tirronen stated that DE needed some
extra moves to improve the performance and the lack of
these search moves can cause stagnation. In [87], Brest and
Maucec also stated the importance of reducing population size
in order to improve the performance of DE. Inspired by these
observations, a neighborhood based mutation is proposed and
integrated with three different DE niching algorithms, namely
CDE, SDE, and sharing DE. Our proposed neighborhood
concept allows a higher exploitation of the areas piloting the
moves, thereby facilitating multiple convergences. In neigh-
borhood mutation, difference vector generation is limited to a
number (parameter m) of similar individuals as measured by
Euclidean distance. The steps of generating offspring using
neighborhood mutation are presented in Table VII. In this
way, each individual is evolved toward its nearest optimal
point and the possibility of between niche difference vector
generation is reduced. The neighborhood based CDE (NCDE),
neighborhood based SDE (NSDE), and neighborhood based
sharing DE (NShDE) are presented in Tables VIII, IX, and X.

In neighborhood mutation, there is only one parameter
m which is the neighborhood size. This parameter controls
how many individuals are selected in each subpopulation.
Generally, m should be chosen between 1/20 of the population
size and 1/5 of the population size. It can also be dynamically
set, from a relatively large value to a small value. Different

Fig. 1. Illustration of neighborhood mutation.

from other niching parameters, neighborhood size is easy to
choose as it can be made proportional to the population size.
Moreover, the performance of algorithm is not sensitive to the
change of the neighborhood size as evidenced in Table XXI
(NCDE).

To further illustrate the detection of local optima by
neighborhood mutation, Fig. 1 is presented. As can be seen,
O1 and O2 are the two peaks to be located. If solutions A
and B are considered, it can be easily seen that two separated
niches are formed by Euclidean distance neighborhood
concept. The mutation vectors are generated within the
subpopulation which is likely to move solution A toward O1

and move solution B toward O2.

V. Experimental Setup

The algorithms were implemented in MATLAB 7.1 and
executed using a Pentium 4 computer with 2.99 GHz CPU
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TABLE VIII

NCDE Algorithm

Step 1 Randomly generate NP number of initial trial solutions.
Step 2 For i = 1 to NP

2.1 Find the parametrically most similar (the similarity is measured in
terms of Euclidean distances of parameter space) m individuals of
solution i to form a subpopulation subpopi.

2.2 Produce an offspring ui using DE within subpopi, i.e.,
pick r1, r2, r3 from the ith subpopulation.

2.3 Calculate the Euclidean distance of ui to the other individuals in
the entire population.

2.4 Compare the fitness of ui with the most similar (in Euclidean distance)
individual and replace the most similar individual if the ui has a better
fitness.

Endfor
Step 3 Stop if a termination criterion is satisfied. Otherwise go to Step 2.

TABLE IX

NSDE Algorithm

Step 1 Randomly generate NP number of initial trial solutions.
Step 2 Sort all individuals in descending order of their fitness values.
Step 3 While the sorted population is not empty

Determine the species seed which is the best (fitness value) unprocessed
individual. Find the parametrically most similar (in Euclidean distance) m

individuals of the species seed and set them as one species. Remove the
processed members for the current populations.

Endwhile
Step 4 For each species, execute a global DE variant:

If the child’s fitness is the same as its species seed, replace this
child with a randomly generated new individual.

Step 5 Keep only the NP fitter (objective value) individuals from the combined
population.

Step 6 Stop if a termination criterion is satisfied. Otherwise go to Step 4.

and 2 GB RAM. The operating system is Microsoft Windows
XP. The DE parameters used in this paper are as follows:
F = 0.9 CR = 0.1. Two experiments are conducted. In
the first experiment, the proposed algorithm is compared with
a number of commonly used niching algorithms, while the
second experiment compares the performance of neighborhood
based DE against one of the most recently reported multimodal
algorithms. In Experiment Two, we use the same test functions
and settings in [38] instead of reprogramming the algorithms
in [38]. In total, 18 different multimodal algorithms are
considered in our experiments:

1) NCDE: the neighborhood based crowding DE;
2) NSDE: the neighborhood based speciation DE;
3) NShDE: the neighborhood based sharing DE;
4) CDE [6]: the original crowding DE;
5) SDE [13]: speciation-based DE;
6) ShDE: modified sharing DE;
7) FERPSO [28]: fitness-Euclidean distance ratio PSO;
8) SPSO [28]: speciation-based PSO;
9) r2pso [28]: a lbest PSO with a ring topology, each

member interacts with only its immediate member to
its right;

10) r3pso [28]: a lbest PSO with a ring topology, each
member interacts with its immediate member on its left
and right;

11) r2pso-lhc [28]: the same as r2pso, but with no overlap-
ping neighborhoods;

12) r3pso-lhc [28]: the same as r3pso, but with no overlap-
ping neighborhoods;

13) CMA-ES [35]: niching covariance matrix adaptation
evolution strategy;

14) SCMA-ES [35]: self-adaptive niching CMA-ES;
15) TSC [36]: topological species conservation;
16) SCGA [18]: species conserving genetic algorithm;
17) DFS [37]: dynamic fitness sharing;
18) TSC2 [38]: topological species conservation 2.

A. Test Functions

In Experiment One, two sets of test functions are used in
order to demonstrate the superior performance of neighbor-
hood mutation based DE. These functions are widely used in
multimodal optimization and possess diverse characteristics.
Set 1 contains 14 basic multimodal problems while set 2
has 15 composite multimodal problems. Table XI presents the
problems used in Experiment One.

In Experiment Two, the test functions and results in [38]
are used. Table XII shows the test functions. More details can
be found in [38]. The experimental procedure is adopted from
[38]. For E1-F1, E1-F2, E1-F6, E1-F7, E1-F10 to E1-F13 the
target is to locate all the peaks (global and local), while for the
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TABLE X

NShDE Algorithm

Step 1 Randomly initialize the population and external archive. The archive size
is two times of the Population size.

Step 2 Modify the fitness value of the solutions in archive using the modified fitness
sharing method (Table III).

Step 3 Sort the solutions in archive in decreasing of the modified fitness order.
Step 4 The first NP (population size) solutions in archive are used as parents to

produce offspring.
Step 5 For i = 1 : NP

5.1 Find the parametrically most similar (in Euclidean distance) m

individuals of solution i to form a subpopulation subpopi.

5.2 Produce an offspring ui using DE within subpopi, i.e.,
pick r1, r2, r3 from the ith subpopulation.

5.3 Calculate the Euclidean distance of ui to the other individuals in
the entire external archive.

5.4 Compare the fitness of ui with the most similar individual and
replace the most similar individual if the ui has a better fitness.

Endfor
Step 6 Stop if a termination criterion is met. Otherwise go to Step 2.

TABLE XI

Test Functions for Experiment One (CF: Composition Function)

Test Function Set 1 Test Function Set 2 [33]
Test Function Name Number of Global

Peaks/Dimension
Test Function Name Number of Global

Peaks/Dimension
E1-F1: two-peak trap [29] 1/1 E1-F15: CF 1 8/10
E1-F1: central two-peak trap [29] 1/1 E1-F16: CF 2 6/10
E1-F3: five-uneven-peak trap [18] 2/1 E1-F17: CF 3 6/10
E1-F4: equal maxima [30] 5/1 E1-F18: CF 4 6/10
E1-F5: decreasing maxima [30] 1/1 E1-F19: CF 5 6/10
E1-F6: uneven maxima [30] 5/1 E1-F20: CF 6 6/10
E1-F7: uneven decreasing maxima [30] 1/1 E1-F21: CF 7 6/10
E1-F8: Himmelblau’s function [30] 4/2 E1-F22: CF 8 6/10
E1-F9: six-hump camel back [31] 2/2 E1-F23: CF 9 6/10
E1-F10: Shekel’s foxholes [14] 1/2 E1-F24: CF 10 6/10
E1-F11: 2-D inverted Shubert function [18] 18/2 E1-F25: CF 11 8/10
E1-F12: 1-D inverted Vincent function [32] 6/1 E1-F26: CF 12 8/10
E1-F13: 2-D inverted Vincent function [32] 36/2 E1-F27: CF 13 10/10
E1-F14: 3-D inverted Vincent function [32] 216/3 E1-F28: CF 14 10/10

E1-F29: CF 15 10/10

rest the objective is to search for the global optimum/optima
and to escape the local peaks.

B. Population Size and Maximal Number of Evaluations

In Experiment One for test function set 1, the level of
accuracy, niching radius, population size, and maximal number
of function evaluations are shown in Table XIII. For test
function set 2, a population size of 600 is used with the
maximal number of function evaluations set at 300 000. The
level of accuracy and niching radius are set as 0.5 and 1,
respectively, for all the problems in test function set 2. The
detailed setting for experiments two can be found in [38].

C. Performance Measure

1) Experiment One: To compare the performance of dif-
ferent multimodal algorithms, in this experiment, a level of ac-
curacy (typically 0<ε <1) indicating how close the computed
solutions to the known global peaks are, needs to be specified

[28]. If the difference from a computed solution to a known
global optimum is below ε, then the peak is considered to have
been found. The performance of all multimodal algorithms is
measured in terms of the following two criteria:

a) Success rate (the percentage of runs in which all global
peaks are successfully located);

b) Average number of optima found [34].

Note that the success rate depends on the specified level of
accuracy. For a more relaxed level of accuracy, an algorithm
is more likely to have a higher success rate [28]. All perfor-
mances are calculated and averaged over 25 independent runs
to deal with the effect due to the random initialization.

2) Experiment Two: In this experiment, two criteria in [38]
are used.

a) Peak accuracy: For each desired peak to be located
the closest individual x in the population is taken and
absolute difference in objective values is calculated. If
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TABLE XII

Test Functions for Experiment Two [38]

Test Function Name Number of Global
Peaks/Dimension

Test Function Name Number of Global
Peaks/Dimension

E2-F1: waves 10/2 E2-F8: Shubert 18/2
E2-F2: six-hump camel back 2/2 E2-F9: Ackley 1/2
E2-F3: sphere 1/2 E2-F10: Michalewicz 1/2
E2-F4: shifted Rastrigin 1/2 E2-F11: Ursem F1 1/2
E2-F5: rotated hybrid composition function 1/2 E2-F12: Ursem F3 1/2
E2-F6: rescaled six-hump camel back 2/2 E2-F13: Ursem F4 1/2
E2-F7: Branin RCOS 3/2

TABLE XIII

Parameter Settings for E1-F11 to E1-F14 (Set 1)

Function No. ε r Population Size No. of Function
E1-F1 0.05 0.5 50 10 000
E1-F2 0.05 0.5 50 10 000
E1-F3 0.05 0.5 50 10 000
E1-F4 0.000001 0.01 50 10 000
E1-F5 0.000001 0.01 50 10 000
E1-F6 0.000001 0.01 50 10 000
E1-F7 0.000001 0.01 50 10 000
E1-F8 0.0005 0.5 50 10 000
E1-F9 0.000001 0.5 50 10 000
E1-F10 0.00001 0.5 50 10 000
E1-F11 0.05 0.5 250 100 000
E1-F12 0.0001 0.2 100 20 000
E1-F13 0.001 0.2 500 200 000
E1-F14 0.001 0.2 1000 400 000

the objective value of individual x is denoted by f (x),
the peak accuracy is calculated using the following
equation:

peak accuracy =
#peaks∑

i=1

|f (peaki) − f (x)| .

b) Distance accuracy: peak accuracy may lead to erroneous
results, if the peaks are close to each other or with
identical height. The distance accuracy is used to avoid
this error. It is calculated the same way as peak accuracy,
with the only change that the fitness values are replaced
by the Euclidean distance [38].

VI. Experimental Results

A. Experiment One

This section presents the experimental results and analyses
of Experiment One. All algorithms were run until all known
peaks were found or the maximum number of function eval-
uations was exhausted. To save space, all the results (i.e.,
tables) are presented in supplementary files, which can be
downloaded from http://ieeexplore.ieee.org or the author’s web
page http://www.ntu.edu.sg/home/epnsugan/ and then clicking
on “Publications”.

1) Results on Test Function Set 1: The results of test
function set 1 are shown in Tables XIV and XV (see supple-
mentary file). The second and third columns of these tables
indicate the level of accuracy and niche radius (for SDE and

SPSO) used in the experiments. Success rates with ranks
(inside the bracket) are listed in Table XIV (see supplementary
file) while the average number of optima found is listed in
Table XV (see supplementary file). From these two tables,
we can see that the proposed algorithm outperforms the other
algorithms in terms of both criteria. For these 14 problems, the
proposed algorithms ranks top three among all the compared
state-of-the-art algorithms. If we compare NCDE with the
original CDE, we can see that NCDE improved 11 problems
out of 14 while the remaining 3 cases perform the same as
both methods are able to locate all optima for all runs. The
superior performance is due to the neighborhood mutation,
which makes it easier for the proposed algorithms to converge
to different optima.

In order to determine the statistical significance of the
advantage of neighborhood mutation based DE over other
methods, t-test is applied on the average number of peaks
found and the results are shown in Table XVI (see supple-
mentary file). The numerical values 1, 0 represent that other
methods are statistically inferior to, equal to the best algorithm.
From the results, we can observe that the neighborhood based
DE methods always perform better or equal when compared
with other niching methods on all test functions.

As stated by Mahoud [15], a good niching algorithm must
be able to locate global optima and maintain them for an
exponential to infinite time period, with respect to population
size. Maintaining found optima is crucial for multimodal opti-
mization algorithms. The neighborhood based DE algorithms
are able to find and maintain the found optima to the end of
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Fig. 2. Overview of average number of peaks found by each algorithm
(Set 1). Results are normalized for each problem so that 1 (white) refers
to the best and 0 (black) to the worst algorithm.

Fig. 3. Overview of average number of peaks found by each algorithm
(Set 2). Results are normalized for each problem so that 1 (white) refers
to the best and 0 (black) to the worst algorithm.

the run. This is because of the replacement strategies. The
replacement is either within the subpopulation or between
most similar individuals. Therefore, once a niche is formed
around one global peak, it can maintain this peak until the
end of the run.

2) Results on Test Function Set 2: All 15 functions in test
function set 2 are composition functions. These composition
functions are much more complex than the functions in set 1.
Among these test problems, no algorithm is able to generate a
nonzero success rate except the proposed algorithms (NCDE
and NSDE). NCDE is able to generate the success rates of 0.8,
0.1, and 0.4 on F3, F4, and F5, respectively, while NSDE is
able to generate the success rates of 1, 0.5, and 0.9 on these
test functions. Therefore, the average number of global optima
found is used as the sole criterion. The results are shown in
Table XVII (see supplementary file). NSDE ranks the best
out of the 13 algorithms on every problem. The statistical
test results are shown in Table XVIII (see supplementary
file). By comparing the results of benchmark sets 1 and 2,
we can conclude that as the complexity of the problems
is increased, the proposed neighborhood mutation increases
its advantage over all competing state-of-the-art algorithms.
Figs. 2 and 3 present a simplified visual comparison based on
average number of peaks found by all algorithms.

3) Locating Local Optima: In order to test the ability
of locating local optima, five test functions (E1-F1, E1-F2,
E1-F3, E1-F5, E1-F10) from Set 1 are used. The results are
shown in Tables XIX and XX (see supplementary file). It can

Fig. 4. Final population of NCDE for E1-F3.

Fig. 5. Final population of NCDE for E1-F5.

Fig. 6. Final population of NCDE for E1-F10.

be observed that with neighborhood mutation the ability of
locating both global and local optima is greatly improved.
To give a clearer view, the final population of NCDE is
also plotted (Figs. 4–6) for E1-F3, E1-F5, and E1-F10. Note
that the population size and maximum number of function
evaluations are set to 500 and 100 000 for E1-F10. The settings
of remaining parameters are kept unchanged.

4) Performance of Different Algorithms on the Test Prob-
lems: This section presents a brief summary on the per-
formance of different algorithms on the tested benchmark
functions.

a) The three novel algorithms (NCDE, NSHDE, and
NSDE): As we can see from the above tables, all the three
algorithms are able to generate consistent and satisfactory
performance over a large number of test functions.
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b) CDE, SHDE, and SPSO: They can generate accept-
able results over simple and low dimensional functions (test
function set 1), but their fine tuning abilities are limited. Their
performances over difficult and high dimensional problems
(test function set 2) are poor.

c) SDE: Although SDE is always able to find certain
number of global peaks and the fine tuning ability over the
found optima is good, it fails to find most of the local
optima. SDE algorithm also shows very poor performance if
the number of global peaks is high. Therefore, if the user’s
target is finding a few global peaks with high accuracy, SDE
could be a good choice. Otherwise, SDE may not be able to
generate satisfactory results.

d) FERPSO: Compared to the algorithms proposed in
the literature, FERPSO is able to generate relatively satisfac-
tory results over many test functions. However, the ability of
locating local optima is very poor. It cannot be used to locate
both global and local optima.

e) R2PSO and R3PSO: These two methods perform
well on simple problems and fail on difficult test functions.
Their ability to locate local optima is also poor. These algo-
rithms do not require any of the niching parameters (same as
the proposed algorithm) which can be claimed as one of the
advantages, as the performance of other algorithms may vary
according to the assigned values of the niching parameters.

f) R2PSOLHC and R3PSOLHC: The performances are
similar to R2PSO and R3PSO. The only difference is that these
two algorithms demonstrated slightly better ability in locating
local optima.

g) SCMA-ES: SCMA-ES is one of the most complicated
multimodal algorithms. Its performance on complex and high
dimensional problems is good. However, this algorithm does
not possess good fine searching ability. Therefore, it may fail
if the level of accuracy is high when solving even simple
problems.

5) Effect of Varying the Neighborhood Size: Although the
performance is not sensitive to the neighborhood size m, it can
still affect the performance. In order to test the effect of vary-
ing the neighborhood size, three problems (E1-F1, E1-F4, and
E1-F11) from test function set 1 are examined using NCDE.
The results are shown in Table XXI (see supplementary file).
For E1-F1 and E1-F4, m is set at 5 (1/10 of population size)
and 10 (1/5 of the population size). As we can see, there is no
difference in performance. For E1-F11, the m is varied from
20 (2/25 of the population size) to 50 (1/5 of the population
size). As we can see, only when m = 20, the performance is
reduced by a small margin.

6) Advantage of Neighborhood Mutation: To show the ad-
vantage of the neighborhood mutation, the NCDE is compared
with the original CDE. The test compares the percentage of
the algorithm that can produce an offspring which is within the
same niche or targeting on the same peak as its parent. If the
offspring generated is within the same niche of the parents, the
offspring and parents are searching for the same peak. In this
case, the chance of refining this peak is increased. In each
generation, the nearest peak to parent and the nearest peak
to its offspring are indentified. If the peaks are the same, it is
consider within the same niche and the percentage is recorded.

Fig. 7. Percentage of local mutation.

Fig. 8. Average distance between parents and offspring.

Fig. 9. Best parents and its offspring of CDE and NCDE in different
iterations on E1-F8.

Fig. 7 shows the percentage (the percentage that an offspring
is within the same niche as its parent) versus the function
evaluation for F11 and CF3. As can be seen, NCDE always
generates a higher percentage than CDE. In order to give a
clearer view, the average distance between the parents and their
offspring in each generation is plotted in Fig. 8. The results
show that NCDE always has a smaller distance than CDE. To
further demonstrate the merit of neighborhood mutation, The
best parents and their offspring of CDE and NCDE in different
iterations (E1-F8) are plotted in Fig. 9. As can be seen from
the plot, the best parents of NCDE are always able to produce
offspring around them, which means within the same niche and
targeting the same optimal solution. However, the offspring
produced are generally far away from their parents for CDE
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Fig. 10. Niching behavior of CDE and NCDE on E1-F8 (with identical
initial solutions).

which may cause slow convergence and poor fine-searching
ability. The distributions of population of CDE and NCDE in
different iterations (E1-F8) are also presented in Fig. 10, which
clearly shows NCDE converges faster than the original CDE.

B. Experiment Two

In this section, the test functions/results reported in [38] are
used and compared with the proposed neighborhood based
DE algorithms. The results for the two criterions (peak accu-
racy/distance accuracy) are shown in Tables XXII and XXIII
(see supplementary file). From Table XXII (see supplementary
file), we can see that the proposed algorithm performs the best
except F8. However, the superior performance of DFS on F8 is
because of the peak accuracy error as explained in Section V-C
on performance measures. The table of distance accuracy can
truly reflect the performance of different algorithms where
the neighborhood mutation based DEs rank on top for all
test functions. Note that NSDE performs very well, if the
target is to locate multiple global optima only. However, the
performance decreases greatly if both local and global optima
need to be found. This is because of the selection strategy
used in SDE and NSDE. The selection method may discard
some of the local peaks during the evolution process.

VII. Conclusion

DE has been widely used as an efficient optimization
algorithm. Although different niching techniques have been
integrated with DE, niching DE algorithms’ performance is

unsatisfactory on multimodal optimization problems. This
paper proposed a neighborhood-based mutation and integrated
it with various niching DE algorithms to solve multimodal op-
timization problems. Neighborhood mutation is able to restrict
the production of offspring within a local area or the same
niche as their parents. This method ensures that the algorithms
converge faster with a high accuracy. We demonstrated that
the neighborhood mutation is able to induce stable niching
behavior. The neighborhood based DE algorithm is able to
locate multiple global optima and maintain them. The results
of experimental studies suggest that the proposed algorithms
can provide a better and more consistent performance than
numerous state-of-the-art multimodal optimization algorithms
on a large number of test problems. Out of 29 problems, the
proposed method improved almost all of them except a few
test instances that both proposed and the original algorithms
are able to solve them perfectly.
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