제3장 의사결정나무

Decision Tree Analysis
데이터 마이닝 기법 분류

지도예측 (Supervised Prediction)
입력변수, 목표변수가 존재
입력변수로부터 목표 값을 예측하는 모형 개발에 목적

- Binary Classifier : 이항 분류
- Neural Network : 신경망 모형
- Decision Tree : 의사결정나무
 - C5.0, CART, QUEST, CHAID
- Regression : 회귀분석
- Logistic : 로지스틱 회귀분석
- Discriminant : 판별분석
- Time series : 시계열분석

자율예측 (Unsupervised Prediction)
목표변수가 명확히 규정되지 않음
데이터에 존재하는 여러 형태의 특징을 찾는 것이 목적

- K-Means : K-평균 군집화
- Two Step : 2단계 군집화
- Apriori : 연관성 규칙
- PCA / Factor : 주성분 / 인자분석
INDEX

1. 의사결정나무의 개념
2. 의사결정나무의 분리기준
3. 의사결정나무분석의 특징
4. 분석사례1 분류나무
5. 분석사례2 회귀나무
6. 분석사례3 대화식 수행
제3장 의사결정나무

3.1 의사결정나무의 개념

• 의사결정규칙을 나무구조로 도표화 하여 분류와 예측을 수행
3.1.1 의사결정나무의 구성요소

- 뿌리마디 (root node): 나무구조가 시작되는 마디
- 끝 마디 (terminal node, leaf): 각 나무줄기의 끝에 위치하는 마디
- 중간마디 (inernal node): 중간에 있는 끝 마디가 아닌 마디

뿌리마디

신용상태
나쁨: 168 52.0%
좋음: 155 48.0%
계: 323 (100.0%)

월소득 < 213만원
나쁨: 143 86.7%
좋음: 22 13.3%
계: 165 (51.1%)

월소득 >= 213만원
나쁨: 25 15.8%
좋음: 133 84.2%
계: 323 (48.9%)

직업: C,D,E,F
나쁨: 143 90.5%
좋음: 15 9.5%
계: 158 (48.9%)

직업: A,B
나쁨: 0 0.0%
좋음: 7 100.0%
계: 7 (2.2%)

연령 < 25세
나쁨: 24 49.0%
좋음: 25 51.0%
계: 49 15.2%

연령 >= 25세
나쁨: 1 0.9%
좋음: 108 99.1%
계: 109 (33.8%)

직업: D,E,F
나쁨: 5 55.5%
좋음: 4 45.5%
계: 9 (2.8%)

직업: A,B
나쁨: 19 47.3%
좋음: 21 52.7%
계: 39 (12.4%)
자식마디 (child node) : 하나의 마디로부터 분리되어 나간 마디
부모마디 (parent node) : 자식마디의 상위마디
가지 (branch) : 하나의 마디로 부터 끝 마디까지 연결된 마디들
깊이 (depth) : 가지를 이루고 있는 마디의 개수
3.1.2 의사결정나무의 형성과정

✓ 의사결정나무의 형성
 : 목적과 자료구조에 따라 적절한 분리기준과 정지규칙을 지정하여 의사결정나무를 얻음

✓ 가지치기
 : 분류오류를 크게 할 위험이 높거나 부적절한 가지를 제거

✓ 타당성 평가
 : 모형평가 도구 (이득도표나 위험도표)
 또는 평가용 데이터에 의한 교차타당성 등을 이용해 평가

✓ 해석 및 예측
 : 의사결정나무를 해석하고 예측모형을 구축
제3장 의사결정나무

3.2 의사결정나무의 분리기준
3.2.1 의사결정나무의 분리기준

✓ 분리기준(split criterion)
 : 어떤 입력변수를 이용하여 어떻게 분리하는 것이 목표변수의 분포를 가장 잘 구별해 주는지 그 기준

 • 目표변수의 분포를 구별하는 정도 : 순수도 or 불 순수도
 * 순수도 : 목표변수의 특정 범주에 개체들이 포함되어 있는 정도

 • 부모마디의 순수도에 비해서 자식마디들의 순수도가 증가하도록 자식마디를 형성함
신용상태
나쁨: 168 52.0%
좋음: 155 48.0%
계: 323 (100.0%)

월소득 < 213만원
나쁨: 143 86.7%
좋음: 22 13.3%
계: 165 (51.1%)

월소득 >= 213만원
나쁨: 25 15.8%
좋음: 133 84.2%
계: 323 (48.9%)

직업: C,D,E,F
나쁨: 143 90.5%
좋음: 15 9.5%
계: 158 (48.9%)

직업: A,B
나쁨: 0 0.0%
좋음: 7 100.0%
계: 7 (2.2%)

연령 < 25세
나쁨: 24 49.0%
좋음: 25 51.0%
계: 49 15.2%

연령 >= 25세
나쁨: 1 0.9%
좋음: 108 99.1%
계: 109 (33.8%)

직업: D,E,F
나쁨: 5 55.5%
좋음: 4 45.5%
계: 9 (2.8%)

직업: A,B
나쁨: 19 47.3%
좋음: 21 52.7%
계: 39 (12.4%)

분리기준이란, 부모마디에 비해서 자식마디들에서 순수도가 증가하는 정도를 수치화 한 것이다.
3.2.2 분류나무와 외귀나무

분류나무 (classification tree) : 이산형 (범주형) 목표변수의 경우
목표변수의 각 범주에 속하는 빈도에 기초하여 분리가 일어남

- 카이제곱 통계량의 p-값 (p-value of Chi-square statistics) : CHAID, QUEST

\[\phi(g) = \chi^2 = \sum_{i=1}^{k} \frac{(n_i - np_{i0})^2}{np_{i0}} \]

- 지니지수 (Gini index) : CART

\[\phi(g) = 1 - \sum_{i=1}^{j} \hat{p}_i(g)^2 \]

- 엔트로피지수 (Entropy index) : C5.0

\[\phi(g) = -\sum_{i=1}^{j} \hat{p}_i(g) \log \hat{p}_i(g) \]

회귀나무 (regression tree) : 연속형 (구간형) 목표변수의 경우
목표변수의 평균과 표준편차에 기초하여 분리가 일어남

- 분산분석 F- 통계량의 p-값 (p-value of F-Statistics) : CHAID

- 분산의 감소량 (Variance reduction) : CART
의사결정나무 구축방법 (예)

불순도 계산의 예 (Gini 지수 사용) \(\phi(g) = 1 - \sum_{i=1}^{j} \hat{p}_i(g)^2 \)

생별을 기준으로 나눈 경우

<table>
<thead>
<tr>
<th></th>
<th>Bad</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>남</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>여</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

나이를 기준으로 나눈 경우

<table>
<thead>
<tr>
<th></th>
<th>Bad</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>>=40</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td><40</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Bad</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>나무의 불순도</th>
<th>성별을 기준으로 나눈 경우</th>
<th>나이를 기준으로 나눈 경우</th>
</tr>
</thead>
<tbody>
<tr>
<td>뿌리 노드의 불순도</td>
<td></td>
<td>1-[(50/100)^2+(50/100)^2]=0.5</td>
<td>1-[(20/50)^2+(30/50)^2]=0.48</td>
</tr>
<tr>
<td>불순도의 감소 폭</td>
<td>1-[(40/50)^2+(10/50)^2]=0.32</td>
<td>1-[(10/50)^2+(40/50)^2]=0.32</td>
<td>1-[(30/50)^2+(20/50)^2]=0.48</td>
</tr>
<tr>
<td>불순도의 감소 폭</td>
<td>0.5-[(50/100)*0.32]*2=0.18</td>
<td></td>
<td>0.5-[(50/100)*0.48]*2=0.02</td>
</tr>
</tbody>
</table>

즉, 성별에 의해 자료를 나누는 것이 나이를 기준으로 분할하는 것보다 종료 노드의 순수성의 증가에 도움이 된다.
CART (Classification And Regression Tree) Algorithm

• 1984년 Breiman과 그의 동료들이 발명
• 기계학습(machine learning) 실험의 산물
• 가장 널리 사용되는 의사결정나무 알고리즘
• 가장 성취도가 좋은 변수 및 수준을 찾는 것에 중점

• 불순도로는 목표변수가: 범주형인 경우 → 지니지수 (Gini Index)
• 불순도로는 목표변수가: 연속형인 경우 → 분산의 감소량

• 분리 방법: 이지 분리 (binary split)
C 4.5, C5.0 Algorithm

• 호주의 연구원 J. Ross Quinlan에 의하여 개발
• 초기버전은 ID 3 (Iterative Dichotomizer 3)로 1986년에 개발
• 가지치기를 사용할 때 학습자료를 사용함

• 목표변수가 반드시 범주형이어야 하며,
• 불순도로 엔트로피 지수 (Entropy index) 사용

• 분리방법: 다지 분리 (multiple split)
• 예측변수가 범주형일 경우, 범주의 수만큼 분리가 일어남
CHAID (Chi-squared Automatic Interaction Detection) Algorithm

- 1975년 J.A. Hartigan이 발표
- AID (Automatic Interaction Detection)를 발전시킨 알고리즘
- CHAID는 가지치기를 하지 않고 나무를 적당한 크기에서 성장을 중지
- 예측변수가 반드시 범주형이어야 함
- 불순도로 카이제곱 통계량을 사용
- 분리방법: 다지 분리 (multiple split)
- 분리변수의 각 범주가 하나의 부마디(sub-node)를 형성
QUEST Algorithm

- 1997년 Loh and Shih이 발표
- 변수의 선택에서 범주의 개수가 많은 범주형 변수로의 bias가 심각한 CART의 문제점을 개선한 알고리즘
- 변수 선택 bias가 거의 없음
- 분리규칙은 분리변수 선택과 분리점 선택의 두 단계로 나누어 시행

- 불순도로 카이제곱 통계량을 사용
- 분리방법: 이지 분리 (binary split)
알고리즘 요약표

<table>
<thead>
<tr>
<th>분류 기준</th>
<th>CART</th>
<th>C 5.0</th>
<th>CHAID</th>
<th>QUEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>목표 변수</td>
<td>범주형 연속형</td>
<td>범주형</td>
<td>범주형 연속형</td>
<td>범주형</td>
</tr>
<tr>
<td>예측 변수</td>
<td>범주형 연속형</td>
<td>범주형 연속형</td>
<td>범주형</td>
<td>범주형 연속형</td>
</tr>
<tr>
<td>분리 기준</td>
<td>지니 지수 분산의 감소량</td>
<td>엔트로피 지수</td>
<td>카이제곱 통계량 F-검정</td>
<td>카이제곱 통계량 F-검정</td>
</tr>
<tr>
<td>분리 개수</td>
<td>이지분리</td>
<td>다지분리</td>
<td>다지분리</td>
<td>이지분리</td>
</tr>
</tbody>
</table>
정지규칙 (stoping rule)
: 더 이상 분리가 일어나지 않고, 현재의 마디가 끝 마디가 되도록 하는 규칙

가지치기 (pruning)
: 적절하지 않은 마디를 제거하여, 적당한 크기의 부나무(subtree) 구조를 가지도록 하는 규칙
적절한 정지규칙 or 가지치기를 수행하여 제거하는 것이 바람직하다.
제3장 의사결정나무

3.3 의사결정나무분석의 특징
3.3.1 의사결정나무분석의 장점

✔ 해석의 용이성
 - 나무구조에 의해서 모형이 표현되기 때문에 해석이 쉽다.
 - 새로운 자료에 모형을 적합 시키기 쉽다.
 - 어떤 입력변수가 중요한지 파악이 쉽다.

✔ 교호작용 효과의 해석
 - 두 개 이상의 변수가 결합하여 목표변수에 어떠한 영향을 주는지 알기 쉽다.

✔ 비모수적 모형
 - 선형성, 정규성, 등분산성의 가정이 필요치 않다.
 - 단지 순위만 분석에 영향을 주므로 이상치에 민감하지 않다.
3.3.2 의사결정나무분석의 단점

✓ 비연속성
 – 연속형 변수를 비연속적인 값으로 취급하여 예측오류가 클 가능성이 있다.

✓ 선형성 또는 주효과의 결여
 – 선형 또는 주효과 모형에서와 같은 결과를 얻을 수 없다.

✓ 비안정성
 – 분석용 자료에만 의존하므로 새로운 자료의 예측에 불안정하다.
 * 평가용 데이터에 의한 교차타당성 평가
 or 가지치기에 의해 안정성 있는 결과를 얻는 것이 바람직