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3. Introduction

» Coordinate system

Cartesian coordinates Cylindrical coordinates Spherical coordinates
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( ¥ 2) 9 SR ¢.0)
x/ X

- One dimensional system

Temperature gradients exist along a single coordinate system, and heat transfer occurs
exclusively in common (planar, cylindrical, and spherical) geometries.
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Under steady-state, one-dimensional conditions with no heat generation
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3.1 Plain Wall

» Temperature Distribution
constant thermal conductivity
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To obtain two unknown constants, two boundary conditions T(0) = T ; and T(L) = T, are necessary.

at x = 0 Ts‘.l - C2

Tx)=(T.,—T.,) X 4T For one-dimensional, steady-state with no heat generation and
' constant conductivity, the temperature varies linearly with x.
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3.1 Plain Wall

» Analogy Analysis

Resistance: Ratio of a driving potential to the corresponding transfer rate

Electricity Heat transfer
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3.1 Plain Wall

» Steady heat conduction in multilayer plane wall
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3.1 Plain Wall

= Thermal Contact Resistance

e The existence of a finite contact resistance is due

—>q;

L
qcontact

Thermal contact resistance for (a) metallic interfaces under vacuum

conditions and (b) aluminum interface

Thermal Resistance, R}, X 10* (m*- K/W)

(a) Vacuum Interface (b) Interfacial Fluid
Contacl pressure 100 kN/m? 10,000 kN/m? Air 2.75
Stainless steel 6-25 0.7-4.0 Helium 1.05
Copper 1-10 0.1-0.5 Hydrogen 0.720
Magnesium 1.5-3.5 0.2-04 Silicone oil 0.525
Aluminum 1.5-5.0 0.2-04 Glycerine 0.265

principally to surface roughness effects.

* Contact spots are interspersed with gaps that are,
in most instances, air filled. Heat transfer is
therefore due to conduction across the actual
contact area and to conduction and/or
radiation across the gaps.

* The contact resistance may also be reduced by

| selecting an interfacial fluid of large thermal
. conductivity.

Thermal resistance of representative solid/solid interfaces

Interface

R.. X 10* (m*-K/W)

Silicon chip/lapped aluminum in air
(27-500 kN/m?)

Aluminum/aluminum with indium foil
filler (~ 100 kN/m?)

Stainless/stainless with indium foil
filler (~3500 kN/m?)
Aluminum/aluminum with metallic (Pb)
coaling

Aluminum/aluminum with Dow Corning
340 grease (~100 kN/m?)
Stainless/stainless with Dow Corning
340 grease (~3500 kN/m?)

Silicon chip/aluminum with 0.02-mm
epoxy

Brass/brass with 15-um tin solder

0.3-0.6

~0.07

~0.04

0.01-0.1

~0.07

~0.04

0.2-0.9

0.025-0.14




3.2 Alternative Conduction Analysis

Insulation

 Under, steady-state conditions with no heat

generation and no heat loss from the sides, heat
transfer rate g, must be a constant independent of x.

Adiabatic—'-/
surface  :-

To AW, 77750u _#" ¢ Even if the area varies with position A(x) and the

thermal conductivity varies with temperature k(7),
_dx dx = 9x+ax

X dx B

qx Xo A()C) N T,

T
— | K(T)dT T, is known, T= T, at some x = x, is known.

q. may be computed by integrating between x, and x;.

A is uniform and £ is independent of temperature, above equation reduces to

q, Ax
A

= — kAT



3.3 Radial Systems

* The Cylinder

Hot fluid
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Cold fluid
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3.3 Radial Systems

= Multilayered cylinder
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3.3 Radial Systems

» The Sphere

drl _ dT
— k(4
dr ( ) dr

dx !

X — — | KT)dT"
"inA(x) Ty ( )
47Tk(TS$| T TS,Z)

(1/r)) — (1/ry)

qr =

1 (11

L Cond 47Tk r "y

* Summary
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3.5 Conduction with Thermal Energy Generation
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 The temperature distribution of processes may be occurring
within the medium due to thermal energy generation.

* A common thermal energy generation process involves the conversion
from electrical to thermal energy in a current-carrying
medium (Ohmic, or resistance, or Joule heating).

 Energy generation may also occur as a result of the deceleration and
absorption of neutrons in the fuel element of a nuclear reactor or
exothermic chemical reactions.

For constant thermal conductivity & and uniform energy

X ..

! +L generation per unit volume (g is constant)

é .
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T(x) Atk
! T,, The general solution is
| T T T where C, and C, are the constants of integration.

T 2l2 C, and C, are determined through boundary conditions.
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3.5 Conduction with Thermal Energy Generation

» Asymmetrical Boundary Conditions
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The general solutionis 7 = —2%( ¥+ Cx+ G,

T(—L)=T,  T(L)=T,,




3.5 Conduction with Thermal Energy Generation

» Symmetrical Boundary Conditions
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