The Helmholtz Equation

Substituting U (r,t) = U(r) exp(j2nvt) from (2.2-5) into the wave equation

2 2rr Helmholtz Equation
VU + kU =0, (Wave equation for monochromatic wave)
2TV W
k = —— = —  wavenumber
C C

Optical intensity (using complex amplitude)

2u?(r, t) = 2a*(r) cos® [2nvt + ()]
= U ()] {1+ cos 2 [2n0t + (r)])}

I(r) =|U(r)]*.
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Elementary waves

Plane waves : solution of Helmholtz equation in Cartesian coordinate
0° 0° 0’

+ +
ox°  oy* oz’

VU + kU =0, V=

U(r) = Aexp(—jk-r) = Aexp|—j(kzx + kyy + k. 2)]
Equal-phase surface (wavefront) is given as

kzx + kyy + k.z = constant

a plane having normal vector of K, X+ ky)A/ +k,Z
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Plane waves

K=k X+k, §+k,2
I(nu 11/15
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Plane waves

Plane wave propagating through z direction c
. A=~
k=kZ U(r)= Aexp(-Jkz) v

u(r,t) = |A| cos [2nv(t — z/c) + arg{A}]

phase velocity
XA — A le— Yy, 2 1)
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Spherical waves

Solution of Helmholtz equation in Spherical coordinate

(with radial symmetry) 1 6 0
V S r -
re ar( ar)
1 6( ,0U A
- +k°U =0 - U(r) = = —Jk
r° ar( or j Hint (r) = = exp(=gkr)

Spherical Wave

Ur) = @ exp(—jkr)

(A
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Paraboloidal waves

Fresnel Approximation of Spher Iw
thdtpaxlpp mt fypt

VTP < 2 2+ (22 + y2)/2z

A
Ur) = TO exp(—jkr) —U(r) = AZQ exp(—jkz) exp [—jk

2 + y2
2z '

Fresnel Approximation
~ Par o oloidal of a Spherical Wave

-
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Condition for Fresnel approx.

Third term of Taylor expansion must be smaller than pi
2 4
Z(H%_/%A...) ks

Np@?n Condition for applying Fresnel approximation
1 <1 — Light emitted from point source can be
considered as paraboloidal wave when this
condition is satisfied.

Np = — Fresnel Number
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Paraxial waves

A paraxial wave is a wave that can be generally written as,

U(r) = A(r) exp(—jkz)

Therefore, paraboloidal wave is also one of paraxial waves.
A 2 2
U@ _Zg@mjk?)z:p[_jkw - yD A(r)
|

— QOptical wavefront mainly changed along z axis.
— Complex amplitude A(r) slowly varying along z axis

KIMnu o115



Paraxia Helmholtz equation

Helmholtz equation

Substitute _
ViU + k*U =0, «— U(r) = A(r) exp(—jk=z)

Paraxial Helmholtz equation

V3A—j 2k%‘é =0 V2 = 82/8z2 + 02/ 8y?
Z
Paraxial Helmholtz equation is a slowly varying envelope

approximation of the Helmholtz equation.

- Plane wave, spherical wave : Solution of exact Helmholtz Eq.
- Paraboloidal wave, Gaussian beam (Ch.3) :
Solution of paraxial Helmholtz Eq.
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Fundamental of Photonics

Wave-Optics (2)

Seung-Yeol Lee
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Optical components (Wave Opt.)

» Reflection & Refraction
: Phase must be same for incident, reflected, and refracted light at
the interface.

phase matching condition
ki-r=ky-r=ks-r forall r = (z,y,0)

kl = k3 — nlk;o and k‘z = nzko

» Snell’s law can be derived by phase
matching condition

klx — k2x
™ Sin 91 = 19 sin 92.
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Thin optical elements

» Phase delay caused by thin optical elements

Ao X
U(z,y,d)/U(z,y,0)
t(z,y) = exp(—jnko.d).
Transmittance of flat dielectric plate

(normal incidence)

exp(—jk; - r) = exp[—jnk,(zcosf; + zsinb,)]

t(z,y) = exp (—jnk,d cosb,)

Transmittance of flat dielectric plate
(oblique incidence)
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Thin optical elements

» Thin plate with variable thickness (refractive index = n)

7 n Optical path length: nd(Xx,y)+n, (d, —d(X,
T ﬁ > (X, y)+ Ny, (dy —d(X, Y))

”~—

Phase delay:

t(z,y) = exp[—jnk.d(z,y)] exp[—jko(do — d(z, y))]

d(x,y)

t(z,y) = hoexp|—j(n — 1)k,d(x,y)]

Transmittance of thin plate with variable thickness
(slowly varying thickness)
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e s When alpha is small,

RN - e
11

Plane wave incidence

o P U Y.2) = Aexp(-jk,2)  z<0
Qutgoing wave (paraxial approximation)

U(x,y,z)=Ah,exp(-j(n—1Dak,x)exp(- jk,z) z>d

Outgoing wave have wavevector of k =((n—-1)ak,,0,k,)

k, =k’ =k =k, sing, ~0, ~(n-1)a
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X e

d(z,y) = do— [R— VRZ— (% + ¥ |

<<——d(x,y) f
7 N x/R2—(w2+yz)%R(1—x2+y2)

2
P\Q C 2R
2 2

< +y
I d ~ —
do

~NY

Transmittance of thin planoconvex lens

T2 + y? R
| -

t(z,y) =~ hoexp [jko T

n—1
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Thin lens

A (double) convex lens
s ——— (X, y) =hexp(Jk, )
\/Rl 21,
X4yl
t, (% ) = h, exp(jk, =)
21,

1 1
_|_
fl f2

t(x, y) = hh, exp( jk, & ;y )[ ])=ho exp(jk, ;y ))

1 _ 1 n 1 =(n-1) 1 _ 1 Same fomula with ray—optic
ff f R (-R) Assumption!
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Plane wave incidence

U(x,y,z)=Aexp(—Jk,z) z<0

Qutgoing wave (paraxial approximation) Wavefront @
—x? 2
U(X,Y,2)= Ah,exp (—jk0 %) exp(—Jk,z)=C exp(—jk0 (%+ Z z>d
J

Wavevector at position X,

i ———
| It focused to focal point!
e f
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