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1 fun, couple, love, love comedy
2 fast, furious, shoot action
3 couple, fly, fast, fun, fun comedy
4 furious, shoot, shoot, fun action
5 fly, fast, shoot, love action
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H1 o2 o] di&d oE#HE JHX|= FRO0IC & 8o Chisl 2|, 22, & 3|5
AXr= 0t CH22| [H 5.2]2f 2L
[H 5.2] MM =8 Xtz

g ?|(feet) =72A(Ibs) 2 37]|(inches)
kA 6 180 12
kA 5.92 190 11
kA 5.58 170 12
kA 5.92 165 10
3 5 100 6
O 5.5 150 8
G 5.42 130 7
PS 5.75 150 9
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[ 53] AN ZFxt20 7|% 57 22

e 7| 225 2 37

- s 24 s 24 s 24
= 5.855 3.5033e-02| 176.26 |[1.2292e+02 11.25 9.1667e-01
-4 54175 |9.7225e-02 132.5 5.5833e+02 7.5 1.6667e+00
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® O XtZ (x)0fl CHH A2 2tE2 T3 2Lt
o p(=dlx) =p(d3) - pClIEd) pEFTS) - p(EZFS)
~ 6.1984 - 107°.
e p(018lx) = p(H8) - pCIIAHG) - p(EFAAS) - p(EZV[|HS)
~ 5.3778-107%,
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> data(iris)

> head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

aoulh wWNPR

5.

(V2 IV A I S S
OOV LO

1

3.

w w www
OCoORrLr NGO

5

1.

R R R R R
N D utw b

4

Q.

O OO0

2

A NMNDNMNDNMODN

setosa
setosa
setosa
setosa
setosa
setosa
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® R I{7|X| {e1071}2| naiveBayes()

> m <- naiveBayes(Species

> m

[=1;
=

~

+2 0/8010] HEH|0| X 2RE 2HIC

., data = iris)

Naive Bayes Classifier for Discrete Predictors

Call:

naiveBayes.default(x = X, y = Y, laplace = laplace)

A-priori probabilities:
Y

# Laplacian(add-1) smoothing

setosa versicolor virginica
©.3333333 0.3333333 0.3333333
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Conditional probabilities:
Sepal.Length
Y [,1] [,2]
setosa 5.006 0.3524897
versicolor 5.936 0.5161711
virginica 6.588 ©.6358796

Sepal.Width
Y [,1] [,2]
setosa 3.428 0.3790644
versicolor 2.770 0.3137983
virginica 2.974 0.3224966
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# mean(Sepal.Llength[Species==“setosa”])

Petal.

Y [,1]
setosa 1.462
versicolor 4.260
virginica 5.552
Petal.

Y [,1]
setosa 0.246

versicolor 1.326
virginica 2.026

Length
[,2]
0.1736640
0.4699110
0.5518947

Width
[,2]
0.1053856
0.1977527
0.2746501
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> table(predict(m, iris), iris[,5])
setosa versicolor virginica

setosa 50 0 0
versicolor %) 47 3
virginica 0 3 47
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“classification and visualization"S 2=SiotC},

O|X| 2  spam At=2= 4601702 O|H|Y (= X)) UM SESHE THO{e| S5 2=l 587 -2 2
SE|0] QUL

58712 H & M Z 487 H=(A1~A48)= T HOf == CiH| 8lf'd TH0{2] Z9IHIES LIEtL
0, 671l H=(A.49~A54)= & 24t == TiH| £ 2At2| Z2it|E 5 LIEHLHH, 371 M

\J

(A.55 57)= Y15E= AL EXte| 20|, 2|t Z0|, tHEXte| S+~& LIEHHLY.
(A 58)= AT O] B{L(1:spam, 0:non-spam)Z LIEHHLCE,

’é‘é {2 O, THOA AHH 2 18137H(39.4%)0|LCt.

> data(spam, package="ElemStatLearn")

> library(klaR)
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o TH X}ZO| 2/32 SHUK X2 510{ NaiveBayes() TH2S S¢f o

> train.ind <- sample(1l:nrow(spam), ceiling(nrow(spam)*2/3),
replace=FALSE)

> nb.res <- NaiveBayes(spam ~ ., data=spam[train.ind,])

> # At Ho{3D|
> opar <- par(mfrow=c(2,4))

> plot(nb.res)
Hit <Return> to see next plot:
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> par(opar)
o MO X2l HEE Xt=E 0|80t Z¥e| Het=F o™ Ct24t 2Lt

> nb.pred <- predict(nb.res, spam[-train.ind,])
> confusion.mat <- table(nb.pred$class, spam[-train.ind,"spam"])

> confusion.mat

email spam
email 517 33
Spam 422 561

> sum(diag(confusion.mat))/sum(confusion.mat)
[1] ©.7031963
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_OFI3 | E0l Al HouseVore(mibench) X2 DI 318ISlEl 435%(UFT267%,
Sebe168)2] 1671 =R E 0| tht THIHE S AR A= 0|C}. R THZ|X| {1071}
S 0|85t H=H0| 22 FE el

> install.packages("el071")

> library (el071)

> install.packages("mlbench")

data (HouseVotes84, package="mlbench")

\%4

head(HouseVotes84)

\%4

()
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Class

1 republican
2 republican
3 democrat
4 democrat
5 democrat
6 democrat

1g
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Cho| X2

Viv2aVv3d V4 V
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KKK KK

5
n y y
n y y
y <NA> y
y n <NA>
y n y
y n y

V9 V1o
n y <NA>
n n n
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Vil V12 V13 V14 V15 V16

n y
n <NA>
n n
n y
y y
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> summary(HouseVotes84)

Class Vi V2 V3 V4 V5
democrat :267 n :236 n :192 n 0171 n : 247 n : 208
Republican:168 vy :187 y :195 y :253  y 2177  y 1212

NA's: 12 NA's: 48 NA's: 11 NA's: 11 NA's: 15
V6 V7 V8 V9 V10 Vil V12
n :152 n :182 n :178 n : 206 n :212 n :264 n :233
y 1272 y :239 y 1242 y 1207 y :216 y :150 y :171
NA's: 11 NA's: 14 NA's: 15 NA's: 22 NA's: 7 NA's: 21 NA's: 31
V13 V14 V15 V16
n : 201 n :170 n :233 n . 62
y :209 y 1248 y :174  y 1269
NA's: 25 NA's: 17 NA's: 28 NA's:104
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> model <- naiveBayes(Class ~ ., data = HouseVotes84)
> pred <- predict(model, HouseVotes84[,-1])
> tab <- table(pred, HouseVotes84$Class)

> tab

pred democrat republican
democrat 238 13
republican 29 155

> table(HouseVotes84$Class)

democrat republican
267 168

> sum(tab[row(tab)==col(tab)])/sum(tab)
[1] ©.9034483



