llapter 9 Abnormal Grain Gro

A microstructure where some grains grow very quickly in a matrix of fine grains
which grow with a very slow growth rate.

Size Size Size



How to define abnormal grain growth? ——
/

Several criteria have been established to define abnormal grain growth (AGG).

G
d —
e.g. (Gj o or

dt G = mean grain size

S G = grain size of a specific grain

O ®

In practice, it is difficult to define AGG because of impingement of large grains.

If the normalized size distribution c does not change much with time, growth is
normal.

G
If the normalized size distribution = becomes broad or bimodal with time, growth is
abnormal.



_—

RN
RS TR

e

RN
RN

96 hr

|
|
o

/
/

AG

Il

48 hr

is abnormal.

n

then gra

)

. T 'f9>3
ere, 1 G

24 hr

12 hr

3

Mormalized Gra

in Size

3191-96 (2008)

Ceram. Soc., 91 [10],

.

Am

J

. Kang,

L

J.

Moon and S

St

K



Why does abnormal grain growth happen? | 2 e

/
e

Several possible reasons:
1. non-uniform distribution of 2nd phase particles or solutes

2. materials with high anisotropy in interfacial energy (g.b. or solid / liquid)
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iform distribution of 2nd phase particles or s¢

 2nd phase / solute pins g.b. and reduces =l .
Vb' >Q . o prediction _
e Ifdriving force F is > critical driving force = no GB segregation
F..., g.b. breaks away from 2nd phase / E
solute and V, increases rapidly. g
e Fdepends on grain size. =
» A few large grains can have large enough F 5
to grow rapidly and form abnormal grains.

driving force, &/r gy (Ja’mj}

F

S. Y. Kimand Y. B. Park, Acta Mater., 56, 3739-3753 (2008)



Red: solute conc.

* Red lines: high solute

conc. (original g.b.s)
 Black lines: g.b.s

S. Y. Kimand Y. B. Park, Acta Mater., 56, 3739-3753 (2008)
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Low solute diffusivity | a 1o- Im?— Qs
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- l terials with high anisotropy in interfacial ener

 y changes with surface orientation * y does not change with
* y is anisotropic surface orientation

* faceted shape * yis isotropic

* facets are crystallographic e spherical (rough) shape

planes with lowest values of y.




)Types of surface |

e

n lowest values of y,,

/E - = O _ At T > OK, vacancies and
c 9 o= Sl adatoms form

n n+on

singular plane that is tilted a few °
steps and terraces
steps have excess energy ¢

vicinal / stepped

‘O Ys, IS Same at all orientations
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rystals are faceted at T = OK

As T T, crystal faces become rough
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Isotropic ¥, / 7| | Anisotropic y, / %,

Disordered (rough) grain boundaries Ordered (faceted) grain boundaries

G.b. curved on microscopic scale G.b. faceted on microscopic scale
M, is constant [not function of F] M, is variable [function of F]



= Driving force for grain growth |

Driving force o g.b. curvature

AG =0V, }—}

r I

AG = driving force

o4 = grain boundary energy
V,, = molar volume

r = mean grain radius

r = grain radius

Each grain has it’'s own values of rand AG
Largest grain has AG = AG_,,

Grains with AG > 0 can grow

Grains with AG = 0 will not grow or shrink
Grains with AG < 0 will shrink

N.b. AG has same meaning as F




Grain growth behaviour of disordered (rough) boundaries
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3 For diffusion controlled growth:
: : = DVAG
= ORT
Driving force AG
4 D, = grain boundary diffusivity
e S oS e > V.. = molar volume
AG <0 AG d = boundary thickness

R = gas constant

: T = absolute temp
Normal grain growth takes place.



Grain growth behaviour of ordered (faceted) boundaries

\
2D nucleation -
controlled
growth

A

\ Growth rate R

Abnormal grain growth can take place.

v

max

/

. . - 2D nucleus
— -
I HEESEE
AG < AG AG 2 AG,

For 2D nucleation controlled growth:

- exp(

VT

6hAGKT

2

)

v, = step velocity
V., = molar volume

€ = edge free energy of 2D nucleus

h = step height

At AG > AG, growth is diffusion controlled.



Microstructures of 70(25TiC-75WC)-30Co (wt%) samples sintered at 1450°C for:
(@) 1 hour; (b) 10 hours and (c) 40 hours (mean WC starting powder size = 0.5um).
The rounded grains are (Ti,W)C and the faceted grains are WC
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~ | Critical driving force | -

2D nucleus Grain surface

| / AG = Vaf

AG. = critical driving force
= V., = molar volume
& = step /edge free energy
h = step height

e
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¢ varies with temperature,
Driving force AG atmosphere and dopant.
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Effect of step free energy on grain growth J
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. N o .
Effect of mean grain size on grain growth

Microstructures of 70(25TiC-75WC)-30Co (wt%) samples sintered at 1450°C for:
(@) 1 hour; (b) 10 hours and (c) 40 hours (mean WC starting powder size = 0.5um).
The rounded grains are (Ti,W)C and the faceted grains are WC

Microstructures of 70(25TiC-75WC)-30Co (wt%) samples sintered at 1450°C for:
(@) 1 hour; (b) 10 hours and (c) 40 hours (mean WC starting powder size = 4.1um).




/ Effect of sintering atlﬁhere on grain growth
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— | Effect of dopants on grain growth |
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Growth Rate R

/*:

[

Rough Surface:

Continuous Growth
Faceted Surface:
2D Nucleation
and growth
Faceted Surface:
Screw dislocation-
assisted growthj
oA 25 Screw dislocation
Driving Force AG
2 AG) € A = constant
R = A( ) tanh| —
€ ¢ = step free energy



~ | Abnormal Grain Growth in AL O,

AlLO MgO doped Al,O,

(b) ()

Figure 120 Porous microstructure in polycrystalline Al,Os (a) leads to an opaque material (b). Nearly pore-
free microstructure in poly crystalline Al> O3 (c) leads to a translucent material (d). (Courtesy of C. E.
Scott, General Electric Company)
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I 1,05, g.b.s are disordered
and no AGG occurs.

If impurities (CaO, SiO,) are
present, g.b.s become ordered and
AGG occurs.

Addition of MgO lowers ¢ and AG,
causing change from AGG to
normal growth.

C. W. Park and D. Y. Yoon, J. Am. Ceram. Soc. 85 [6]
1585-93 (2002)




‘| Solid State Single Crystal Growth (SSCG) \

/ E

Seed crystal

\

L

f

|

Green ceramic matrix

Seed crystal

.

1

|

Sintered ceramic substrate

Sinter

Seed crystal

\

\

/ Single crystal

Ceramic matrix

ﬁ

Anneal

Ceramic substrate

Seed crystal

\
Single crystal




Backscattered electron image —
the single crystal is monophase

Secondary
electron image

Single crystal

(110) KTa0,
—~seed

Single crystal
Secondary
electron image

Single crystal of (K, .Na, )NbO, grown in a hot press at 1100°C and 50 MPa for 100 hours
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