열전달 강의개요 ^{열전달 강의개요}

강의목표

- 강의개요 소개
- 열전달 정의
- 열전달 응용
- 에너지
- 에너지 법칙
- 기계
- 열전달을 배워야 하는 이유

기계 전 기계 이 제 도 기계 이 제 표 기계 제 표 기계 이 제 표 기계 제 제 표 기계 제 제 제 표 기계 제 표 기계

열전달 강의개요

- 열전달
- 열 흐름 현상에 관한 학문
- 열 흐름 기구, 원리, 수식, 계산, 장치 설계
- 열에너지 관련 기기 설계, 제작, 운용할 능력 배양
- 교수명
- 강희찬, 군산대학교
- 063-469-4722 (연구실)
- hckang@kunsan.ac.kr

명전달 열전달 개요, 전도, 대류

열전달 강의목표

- 열전달 기초 개념과 물리적 원리 학습
- 열 관련기기를 이해하고 해석할 수 있는 능력을 배양
- 응용과목의 기초이론 학습
- 내연기관, 공기조화 기기, 냉난방 설비, 환경설비

열전달 열전달 개요. 전도. 대류 4

강의내용

- 열전달 기초
- 비정상열전달, 전도열전달
- 열저항, 접촉열저항, 휜
- 발열고체 정상열전도
- 비정상열전도
- 물체표면에 따른 강제대류

열전달이란?

- 열(熱, heat)의 전달(傳達, transfer)
- 에너지의 형태
- 일, 역
- 전기, 화학, 원자력, 자기, 내부, 운동, 위치, 압력, 풍력, 태양력 등

열전달 열전달 개요. 전도, 대류 6

에너지의 정의

- 힘
- 거리
- 힘 x 거리
- 단위

열전달

결전달 개요, 전도, 대류

기계와 에너지

- 기계란?
- 인간에게 유용한 일을 하는 장치
- 에너지를 사용
- 예: 자동차, 발전소, 냉장고, 세탁기, 컴퓨터, 계산기
- 기계는 열에너지와 반드시 관련

.

열전달 개요, 전도, 대4

자동차

- 에너지의 변환
- 휘발유(화학)→연소→열→엔진→일→구동→마찰→열
- 에너지는 변환
- 양과 방향

전달 열전달 개요. 전도, 디

롤러코스터

- 에너지 변환
- 동력→위치→운동→마찰→정지→열
- 모든 에너지는 열로 변환

열전달 개요, 전도, 대류

열전달 과목 중요도

- 미국에서 성공한 기술자 4000명을 대상으로 조사
- 열전달 12위
- 임재춘, 2003, 한국의 이공계는 글쓰기가 두렵다, pp. 26, 마이넌, 서울

순위	학과목	순위	학과목
1	경영학	11	컴퓨터
2	Technical Writing	12	열 전 달
3	확물과 통계	13	기기사용 및 측정
4	발표	14	데이터 처리
5	황의	15	시스템 프로그래밍
6	개인 간 인화	16	검제학
7	그룹 간 연화	17	미분학
8	속목	18	논리학
9	대화	19	경제분석
10	영업	20	용용프로그래밍

전달 열전달 개요. 전도, 대류

열역학 제1 법칙

- 열역학 제 1법칙
- 에너지는 생성하거나 소멸되지 않음
- 에너지의 형태가 변화하는 과정에서 양은 동일함

열전달 개요, 전도, 대류

열역학 제 2법칙

- 열역학 제 2법칙
- [일, 전기, 원자력, 화학, 빛 ...] → 열
- 순방향 에너지 변환효율 100%
 - [일, 전기 ...] → 열
- 역방향 에너지 변환효율 100% 불가능
 열 → [일, 전기, 빛...]
- 모든 에너지는 최종적으로 열 에너지로 변환
- 에너지 변환에서 방향성

학습점검

- 열전달 정의
- 열역학 제 1법칙
- 열역학 제 2법칙
- 열전달을 배우는 이유

전도열전달 ^{영전당} 영전당 78. 전도 대류 15

전도열전달

- 전도(heat conduction)
- 대류가 없는 유체에서 분자의 불규칙한 운동에 의한 에너지 전달, 에너지의 확산(diffusion)
- 고체에서 격자파(lattice wave)에 의한 열에너지 전달
- 분자나 전자의 매체에 의한 열흐름
- 공(에너지)을 옆 사람(분자)에게 전달

열전달 열전달개요. 전도, 대류 17

전도열전달의 응용

- 젓가락
- 건물 벽체
- 엔진 블록
- 지표

당전달 열전달 게요. 전도, 대류 18

전도 법칙

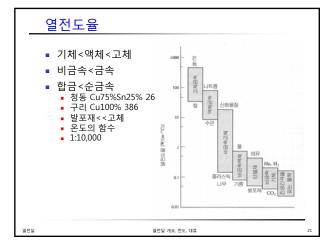
- Fourier의 전도법칙
- Biot의 실험적 관찰에 근거

$$Q_x = -kA\frac{dT}{dx} \quad [W]$$

- 열전도율 *k* [W/m·K]
- 음의 부호: 온도구배는 열흐름과 반대방향

열전달

결전달 개요, 전도, 대류


전도 법칙-단위계산

■ Fourier의 전도법칙

$$Q_x = -kA\frac{dT}{dx} \quad [W]$$

- 열 에너지
- 열전달율
- 면적
- 온도
- 온도구배
- 열전도율

여저다 게이

EES로 열전도율 찾기

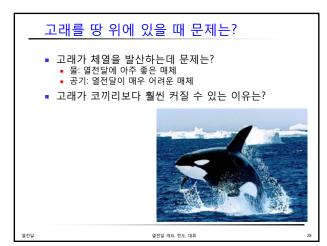
- Property
- 물질
- 온도

자연에서 열 에너지의 전달

- 생명체
- 에너지 취득, 열 발생
- 방열
- 체온 > 외기 온도

NO GNO TO NY FEE

자연에서 열 에너지의 전달

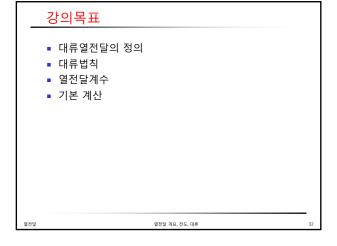

- 열발생량과 방열성능
- 열발생량: 몸무게에 비례
- 방열성능: 표면적에 비례
- 비교 예
 - 길이비 1: 3
 - 열발생량비 (체중비) 1:27

 - 방열비 (표면적비) 1:9 표면적/체중 (1/1):(9/27) = 1:(1/3)
- 덩치가 클수록 상대적으로 방열할 수 있는 면적이 적
- 덩치가 클수록 열전달에 불리

열전달 개요, 전도, 대류

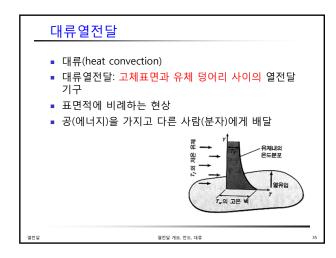
전도열전달 계산 예

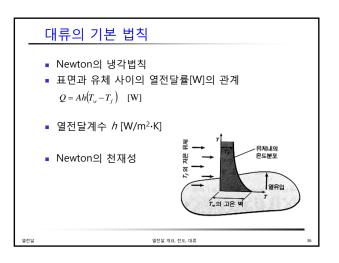
- 두께 0.4m 콘크리트벽
- 외부 50C, 내부 15C
- 열전달률

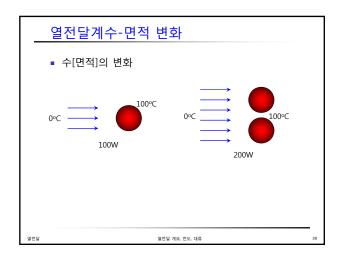

열전달 개요, 전도, 대류

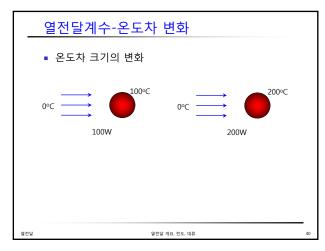
학습점검

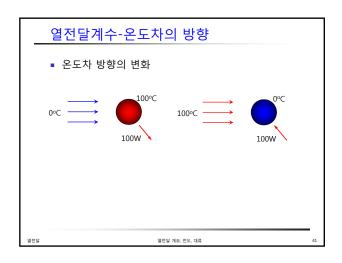
- 전도열전달 정의
- 전도법칙
- 열전도율
- 자연에서 열전달

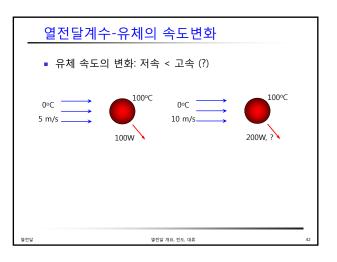

열전달 개요, 전도, 대류

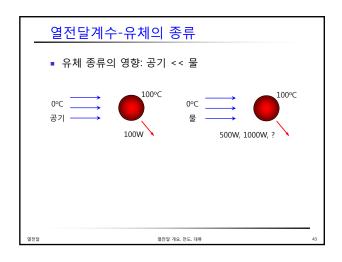

대류열전달 ^{열전달 열전달계요 전도 대류} 31

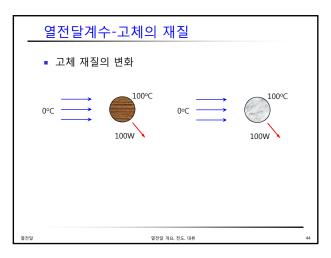


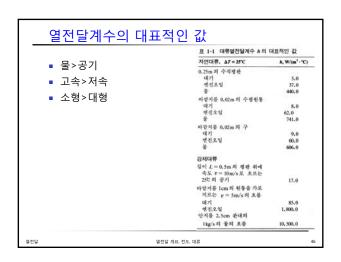


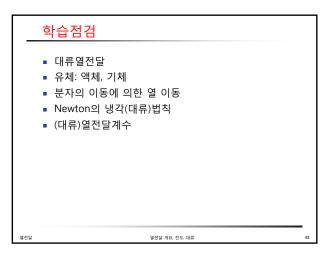




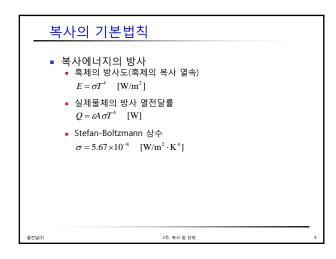


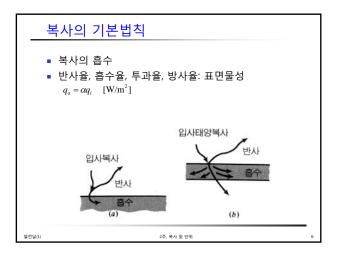


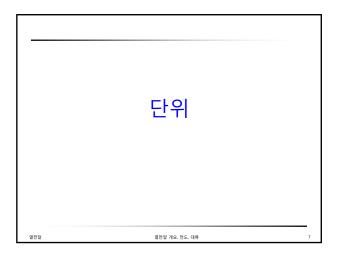




열전달계수의 특징 정리 - 유체의 종류와 유동 특성에 따라 변화 - 고체의 형상에 관련 - 고체의 재료와는 무관 - 고체 내부에서의 열전달 현상 → 전도열전달 문제 - 온도차에 비례


	표 1-1 대쀼열전달계수 #	표 1-1 대류열전달계수 #의 대표적인 값		
■ 길이 1m, 지름 0.02m 수평원	의 토 자연대류, Δ7 = 25°C	h, W/(m² - °C)		
• 29 m, 7 a 0.02m 1 o	0.25m의 수직평관	ence		
 원통 온도 50C, 대기 15C 	대기	5.0		
 편의 근고 30C, 네가 13C 	엔진오잎	37.0		
■ 열전달윰	*	440.0		
■ 일신글팔	마깥지름 0.02m의 수행원시			
	대기	8.0		
	엔진오일 봉	62.0		
		741.0		
	바깥지품 0.02m의 구 대기	100		
	엔진오일	9.0		
	A. C. C. P. B.	606.0		
	강제대류			
	길이 L = 0.5m의 결판 위어	1		
	今足 #= 10 m/s 是 走三七			
	25는의 공기	17.0		
	바깥지름 1cm의 원통을 가로 지르는 ν = 5m/s의 효름			
	대기	85.0		
	엔진오일 안지품 2.5cm 관내의	1,800.0		
	1kg/s의 물의 흐믐	10,500.0		


복사열전달 ^{좋전말} ^{열전말계호,전호,대휴} 1



보사의 기본법칙 - 열복사(thermal radiation) - 물체가 온도에 따라 방출하는 에너지 - 물통(에너지)을 다른 사람(분자)에게 던지는 것 - 방사(emission)와 흡수

복사의 흡수 보사의 흡수 보사원 흡수율 투과율 F과율 F과B F과명 W/M²]

단위

- SI 단위계 (Systeme International d'Unites)
 - 국제표준단위계
- 영국공학단위계 (English Engineering Unit)
 ft-lb 단위

물리량	SI 단위	영국공학단위
길이	m	ft
질량	kg	lb
시간	S	S
온도	K	R
힘	N	lb _f
에너지	J	Btu, ft.lb _f
동력	W	Btu/hr, HP

쉬어가기

- 펌프 한대 주세요
- 몇 톤짜리?
- 톤이요?
- 몇 m짜리?
- 펌프가 몇 m요?

2주, 복사 및 단위

SI 단위 특징

- 특징
- 제계적: 길이, 시간, 힘 → 질량 → 일 → 동력 → 전기
 과학적: 일, 열, 운동, 위치에너지
 계산이 용이: 보정계수가 불필요
- 힘 = 질량 x 가속도

$1 N = 1 kg \times 1 m/s^2$

■ 일 에너지 = 힘 x 거리

$1 J = 1 N \cdot 1 m$

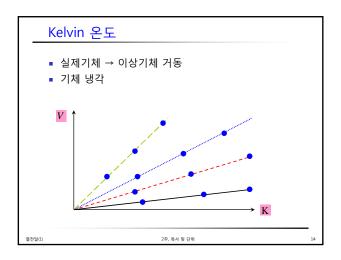
■ 동력 = 에너지 / 시간

1 W = 1 J/s

2주, 복사 및 단위

SI 단위

- - 르 기구의 극점에서 적도까지의 길이: 10,000 km 기본단위: m 소문자 m
- 질량


 - 물의 밀도는 4°C에서 최대
 한 변의 길이가 0.1 m인 입방체 내의 4°C 물: 1 kg
 기본단위: kg, Kg(X), kG(X), KG(X)
- 힘
 - Newton의 제2법칙기본단위: N
- - 단위 면적 당 힘, Pascal 기본단위: Pa, PA(X)

SI 단위

- - 일 에너지 기준, 모든 종류의 에너지
 Joule의 실험
 기본단위: J
- 동력
- 단위 시간당 에너지, Watt기본단위: W
- 온도
 - 절대온도: Kelvin
 - 기본단위: K K = 273.15 + ℃ 온도차

 - 283.15K-273.15K = 10°C 0°C

온도 ■ 화씨 Y™ Mr. Gabriel Fahrenheit 1700초, 독일, 온도계 제작자 최저온도: 얼음+소금, 0°F 최고온도: 체온, 96°F 96/48/24/12 Why 96°F? ● 50/15/2 (7.22) 선씨 ● Mr. Anders Celsius 물의 끓 • 1742년 ■ 물의 끓는 점: 0°C ■ 물의 어는 점: 100°C ■ 1948년, 공식적으로 Celsius 온도계 지정 물의 끓는점 0°C? Kelvin 온도 ● 1800년대 초, William Thomson (Lord Kelvin) ■ 이상기체 팽창계수에 근거 ■ 체계적인 온도척도 제시 2주, 복사 및 단위



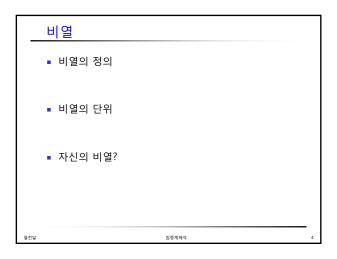
단위표시 규칙

■ 접두어

	10-12	pico (p)	10	deca (da)
	10 ⁻⁹	nano (n)	10 ²	hecto (h)
Ī	10-6	micro (μ)	10 ³	kilo (k)
	10-3	milli (m)	106	mega (M)
	10 ⁻²	centi (c)	10 ⁹	giga (G)
	10 ⁻¹	deci (d)	10 ¹²	tera (T)

- 표시규칙 사람이름 대문자: N, K, J, W, C, A, Pa 중복회피 M (접두어), m (길이) G (접두어), g (질량)

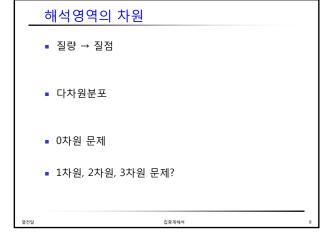
학습점검

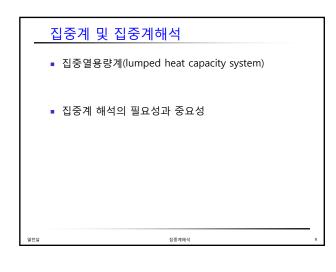

- 복사
- 방사와 흡수
- Stefan-Boltzmann의 법칙
- 흑체(blackbody)
- 단위
- 단위환산
- 기본단위: m, kg, s, K
- 표기방법

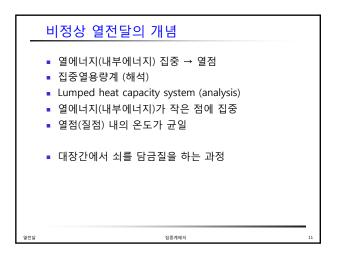
열전달 개요, 전도, 대류

집중계해석의 개요 88제4 1

<u>강의목표</u> ■ 집중계 란 무엇인가? ■ 열용량 ■ 내부에너지 ■ 집중계 응용


밀도의 정의 자신의 몸무게 자신의 체적?




내부에너지		
■ 내부에너지의 정의		
■ 자신의 내부에너지		
■ 내부에너지의 기준		
열전달	집중계핵석	6

엔탈피(enthalpy)의 정의 자신의 엔탈피? 엔탈피의 기준

집중열용량계의 응용

- 담금질 시간-온도
- 커피 잔이 식는 시간
- 포도송이를 냉장고에서 냉각하는데 걸리는 시간
- 물통에서 물이 빠지는데 걸리는 시간
- 가스보일러 환기 시스템에서 열손실량

집중열용량계의 응용

- 온도 측정에서 온도계의 응답시간
- 습구온도계의 응답속도
- 라디에이터의 열전달계수
- 과학수사

쉬어가기: 과학수사

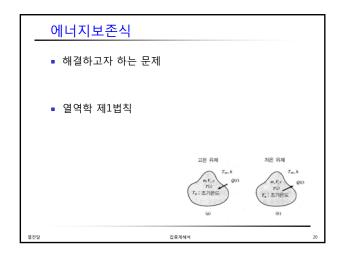
■ 개가 사망한 시간은?

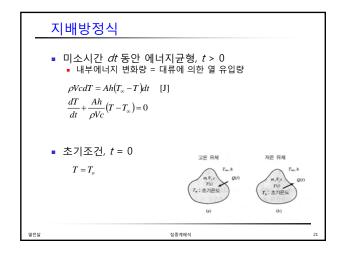
여자다 지중계세서

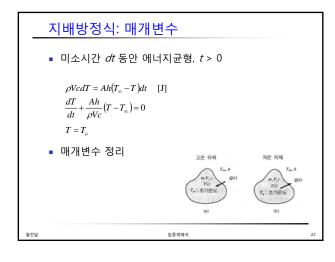
학습점검

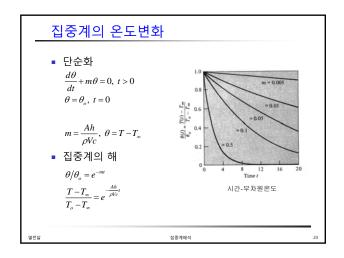
- 밀도, 제척
- 내부에너지, 엔탈피
- 열용량
- 내부에너지
- 집중열용량계 해석의 응용

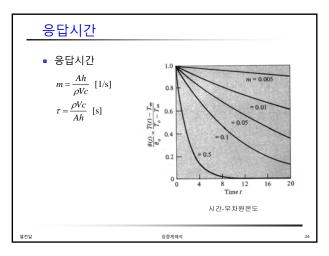
(EME) 13.74MH

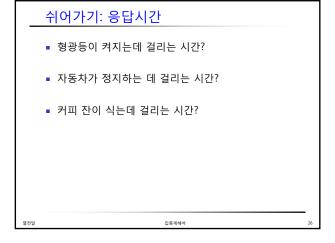

집중계해석 지배방정식

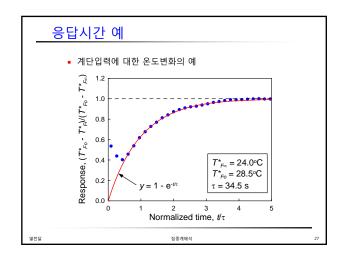

강의목표

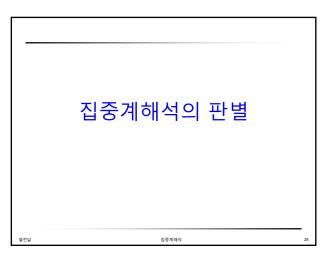

- 에너지 보존식
- 지배방정식
- 일반해

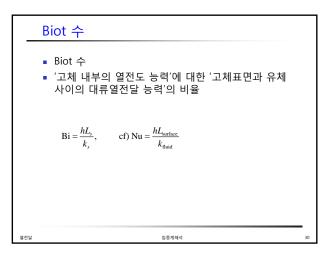

...










응답시간 오차율이 36.8%가 되는 시간 총변화량의 63.2%가 진행되는 시간 대부분의 변화가 일어나는 시간 $\theta/\theta_o = e^{-t/t}$ $\frac{T - T_\infty}{T_o - T_\infty} = e^{-1} = 0.367$ @ $t = \tau$ 0.367

강의목표 집중계 해석 판별조건 Biot수 무차원수 에제

특성길이

- 체적/표면적
- 철사의 특성길이
- 구의 특성길이

$$L_s = \frac{V}{A}$$

특성길이 (characteristics length)

■ 반지름이 R인 구

$$L_{s} = \frac{V}{A} = \frac{\frac{4}{3}\pi R^{3}}{4\pi R^{2}} = \frac{R}{3}$$

■ 반지름이 R, 길이 L 인 원통

$$L_s = \frac{V}{A} = \frac{\pi R^2 L}{2\pi R(L+R)} = \frac{RL}{2(L+R)}$$

특성길이

■ 긴 원통 L >> R

$$L_s = \frac{V}{A} = \frac{\pi R^2 L}{2\pi R(L+R)} = \frac{RL}{2(L+R)} \approx \frac{R}{2}$$

■ 모서리 L 정육면체

$$L_{s} = \frac{V}{A} = \frac{L^{3}}{6L^{2}} = \frac{L}{6}$$

집중계해석

특성길이

■ 면적 A* 이고, 두께 L 인 큰 평판

$$L_{s} = \frac{V}{A} = \frac{LA^{*}}{2A^{*}} = \frac{L}{2}$$

쉬어가기: 무차원수

■ A4용지의 규격

Biot 수의 물리적 의미

- 유체-고체간 대류 열전달 용이성 / 고체 내부 전도열 전도 용이성
- 고체 내부 열전달 저항 / 유체-고체간 열전달 저항

$$Bi = \frac{hL_s}{k_s} = \frac{h}{k_s/L_s}$$

$$Bi = \frac{hL_s}{k_s} = \frac{h}{k_s/L_s}$$

$$Bi = \frac{Ah}{\frac{Ak_s}{L_s}} \approx \frac{T_s - T_i}{T_s - T_f}$$

집중열용량계의 판정

- 집중계(열용량계) 판별기준 Bi < 0.1 이면 고체 내부의 온도차는 유체-고체 간의 최대 온 도차의 5% 이내
 - 고체의 온도는 시간만의 함수로 가정이 가능함

$$Bi = \frac{hL_s}{k_s} < 0.1$$

$$Bi = \frac{Ah}{\frac{Ak_s}{L_s}} \approx \frac{T_s - T_i}{T_s - T_f} < 0.1$$

$$T_s - T_i < 0.1 (T_s - T_f)$$

집중계해석

예제 2-1 (pp. 24)

- 반지름 R = 2.5 cm, k = 54 W/m.ºC, p = 7833 kg/m³, c = 0.465 kJ/kg.ºC
 의 강구가 공기흐름에 의하여 냉각되고 있다. 공기온도 50°C, 대류열전달계수 h = 100 W/m².ºC 일 때, 강구의 온도가 850°C에서 250°C까지 냉각되는데 걸리는 시간을 집중계 해석으로 구하여라.
- 풀이: 집중열용량계 해석

예제 2-2 (pp. 25)

- 반지름 R=2.5 cm, k=50 W/m. $^{\circ}$ C, $\rho=7800$ kg/m 3 , c=0.5 kJ/kg. $^{\circ}$ C 인 강봉을 50° C의 주위유체 내에서 800° C에서 100° C까지 서서히 냉각시킴으로 풀림처리를 하려고 한다. 주위유체와 강봉 사이의 열전달계수 h=45 W/m 2 - $^{\circ}$ C 일 때 집중계 해석을 이용하여 풀림 처리과정에 필요한 시간을 구하여라.
- 풀이: 집중열용량계 해석

집중계해석

예제 2-3 (pp. 26)

- 초기에 균일한 온도 250°C를 갖는 두께 L = 0.1 m의 알루미늄 평판 [k = 204 W/m°C, p = 2707 kg/m³, c = 0.896 kJ/kg. °C]이 온도 50°C의 공기 흐름에 노출되어 냉각되고 있다. 공기흐름과 알루미늄 평판 사이의 열전달계수 h = 80 W/m²-°C 일 때, 이 평판을 100 °C까지 냉각하는데 소요되는 시간을 집중계 해석을 이용하여 구하여라.
- 풀이: 집중열용량계 해석

집중계해석

실습과제

- 대상선정
- 실험 수행
- 비교인자 선정
- 해석
- 보고서 작성

집중계해석

학습점검

- 집중열용량계
- 집중열용량계의 해
- 집중계 판정
- Biot 수
- Bi < 0.1 : 집중계 간주 가능


전도방정식의 개요

강의목표 에너지보존식 전도방정식의 유도 전도방정식의 이해 단위 및 물리적 의미

에너지 본존식

- 사건 또는 시간에 따라 에너지는 형태가 변화
- 사건 전후 에너지의 총합은 일정
- 에너지 보존
- 에너지는 생성 또는 소멸하지 않음

면전달 전도방정식

내부에너지

- 내부에너지
- 물질의 온도(뜨거운 정도)의 형태로 보유한 에너지
- 질량 x 비열 x 온도
- 내부에너지가 크려면?
- 질량
- 비열
- 온도

-열천달 전도병정식 5

Fourier Law

- 전도법칙
- 경험식
- 모든 확산(diffuse)은 유사
- 고밀도 → 저밀도
- 열전달률
- 온도차/길이

 $Q = -kA\frac{dT}{dX}$

- 면적
- 열전도율

내부열발생

- 내부에서 열발생
- 연탄
- 인체
- 내부열생성율
- 열발생율/체적
- 단위 W/m³

쉬어가기: 인체 열발생률

- 2200 kcal /일 소모
- 체중 65 kg
- 모든 에너지 → 열에너지

$$Q_{g} = \frac{2200 \text{ kcal}}{1 \text{ day}} = \frac{2200 \text{ kcal}}{1 \text{ day}} \left[\frac{1 \text{ day}}{24 \text{ hr}} \right] \left[\frac{1 \text{ hr}}{3600 \text{ s}} \right] \left[\frac{4180 \text{ J}}{1 \text{ kcal}} \right] = 106 \text{ W}$$

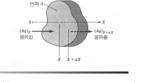
$$V = \frac{m}{\rho} = \frac{65}{970} \left[\frac{\text{kg}}{\text{kg/m}^{3}} \right] = 0.0670 \text{ m}^{3}$$

$$V = \frac{m}{\rho} = \frac{65}{970} \left| \frac{\text{kg}}{\text{kg/m}^3} \right| = 0.0670 \text{ m}$$

$$g = \frac{Q_g}{V} = \frac{106}{0.0670} = 1580 \text{ W/m}^3$$

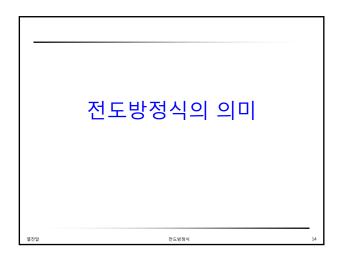
열 이득과 온도변화

- 댐에서 수위 문제
- 급수량 > 배수량 → 수위 상승
- 급수량 = 배수량 → 수위 고정
- 물체의 온도
- 흡열 > 방열 → 온도 상승
- 흡열 = 방열 → 온도 고정

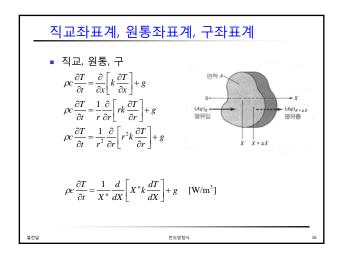

1차원 전도

- Net 질량이란?
- 총질량 병의 질량
- 좌우 측의 에너지 균형
- 유입과 유출의 차
- 책의 중간 한장에서 net 전도열량

1차원 전도방정식 유도 ■ 내부에너지 = 열전도 이득 + 내부 열 생성


1차원 전도방정식

- 1차원 전도 일반식
- 내부에너지 = 열전도 이득 + 내부 열 생성 $\rho c \frac{\partial T}{\partial t} = \frac{1}{X^n} \frac{d}{dX} \left[X^n k \frac{dT}{dX} \right] + g \quad [W/m^3]$
- n. 곡률의 수, X. 열전도 방향 좌표

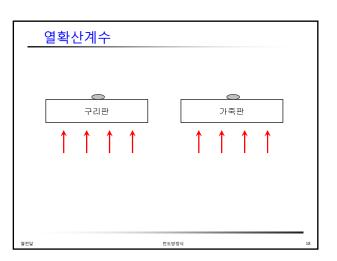

학습점검

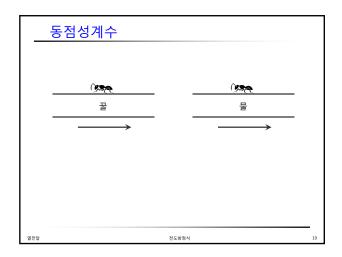
- 전도에 대한 에너지 균형식
- 내부에너지 증가 = 전도 이득 + 내부 열발생
- 정미의 열전도

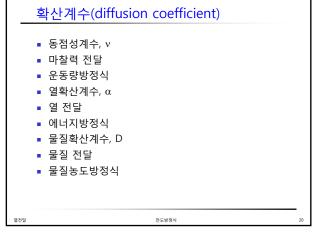
강의목표

- 전도방정식의 확장
- 열확산계수
- 물리적 의미

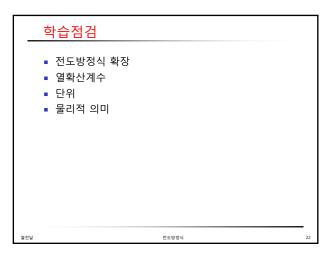
전도방정식 확장 및 적용

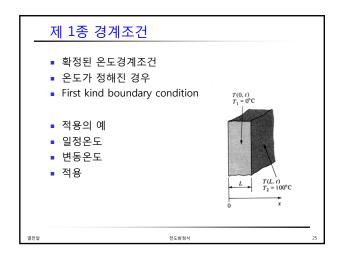

- 3차원 전도 (직교좌표계)비열 일정

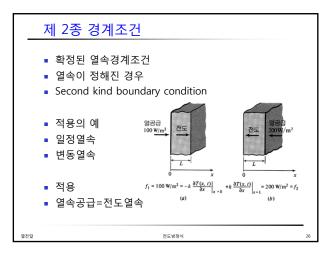

$$\rho c \frac{\partial T}{\partial t} = k \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right] + g = k \nabla^2 T + g$$

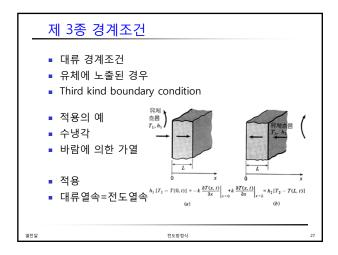

■ 1차원 열전도, 직교좌표, 비열일정, 내부열 발생 없음

$$\frac{\partial T}{\partial t} = \frac{k}{\rho c} \frac{\partial^2 T}{\partial x^2}$$
$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

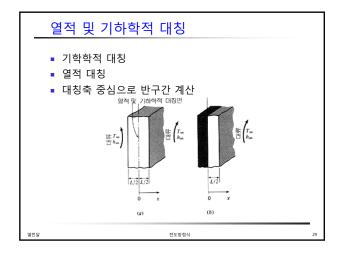

■ 열확산율 (m²/s)

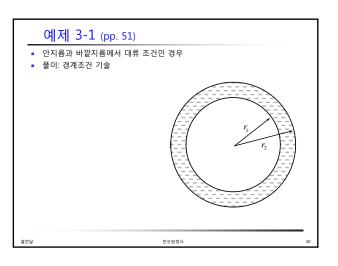


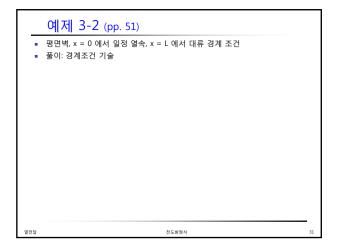

확산계수(diffusion coefficient) - 공통사항 - 단위: m²/s - 무차원수: Pr, Sc - 확산속도에 관여하는 인자

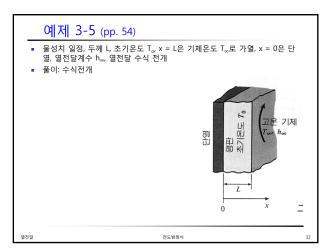


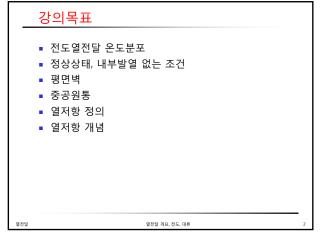
경계조건 ^{영점} 전도병정식 23

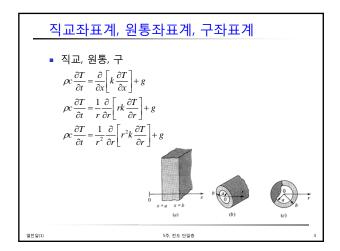

강의목표 ● 경계조건의 종류 ● 온도 ● 열속 ● 대류 ● 경계면에서 열적 조건 ● 단열 경계조건 ● 열적 대칭

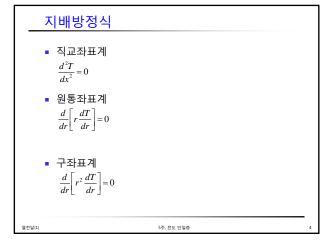


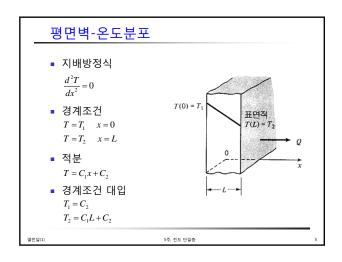


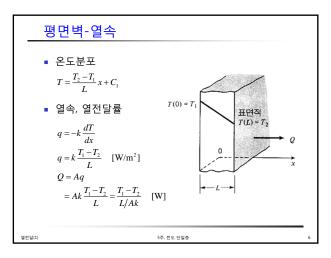


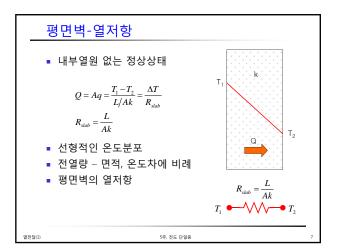


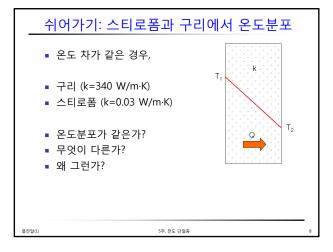

학습점검

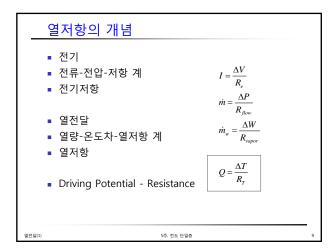

- 전도에 대한 에너지 균형식
- 내부에너지 증가 = 전도 이득 + 내부 열발생
- 직교, 원통, 구 좌표계
- 확산계수: 열전도 속도, m²/s
- 동점성계수, 물질확산계수
- 경계조건
- 확정 온도, 확정 열속, 대류
- 열적 기하학적 대칭

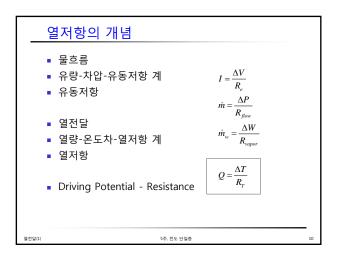

열전달 전도방정식 33

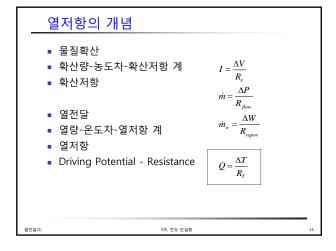

평면벽 열저항 ^{영전말 영전말개요.전도.대한} 1

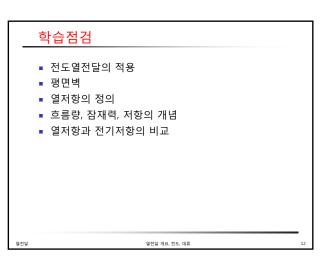


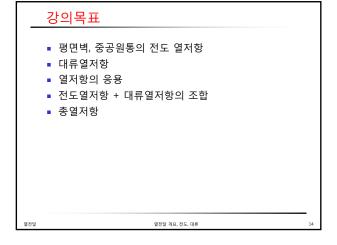


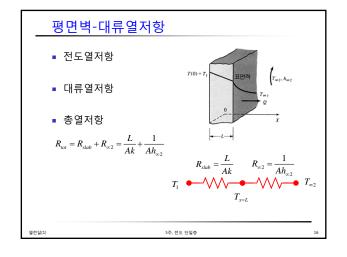


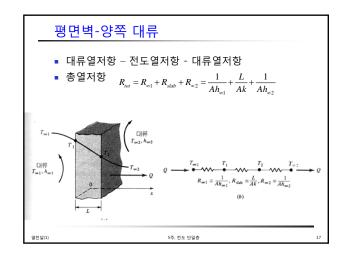


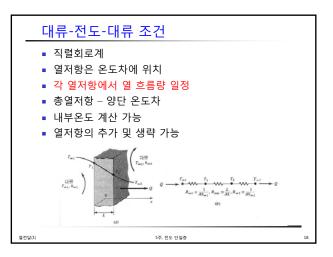


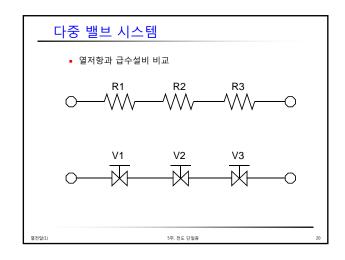


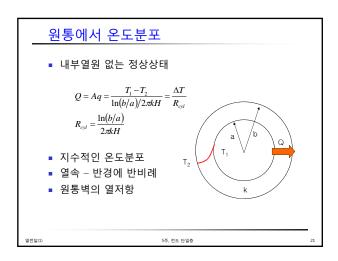


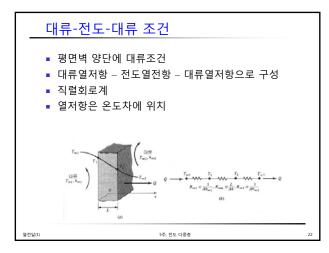


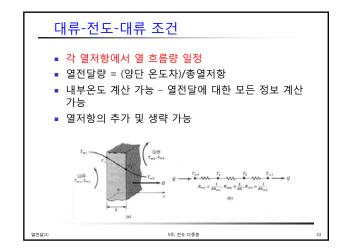


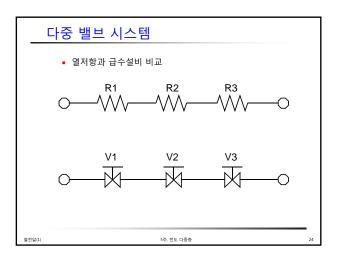

대류열저항 ^{8전달} 영전문계요 전도 대류 13

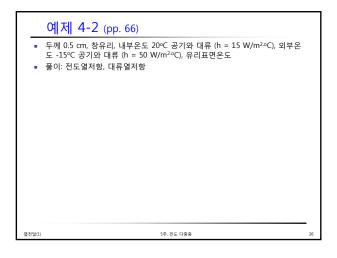

평면벽- 일정온도 및 대류 경계조건 ■ 평판에서 전도열전달 (0 < x < L)=대류열전달 (x = L) ■ 열속, 열전달률 $Q = Ak \frac{T_1 - T_{x=L}}{L} = Ah_{x_2} [T_{x=L} - T_{x_2}]$ $T_1 - T_{x=L} = Q \frac{L}{Ak}$ $T_{x=L} - T_{x_2} = Q \frac{1}{Ah_{x_2}}$ $Q = \frac{T_1 - T_{x_2}}{L}$ $Q = \frac{T_1 - T_{x_2}}{Ak + Ah_{x_2}}$

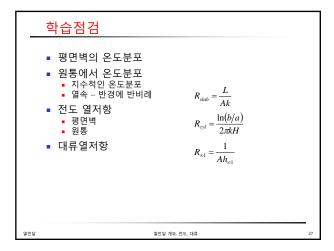


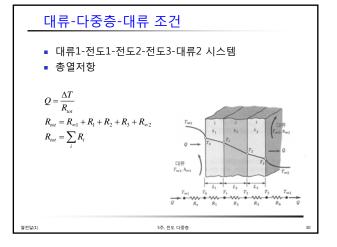


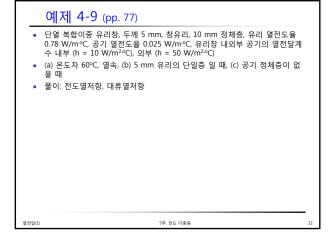



수 어가기: 사우나 탕과 목욕탕 ■ 건식 사우나의 온도? ■ 왜 건식 사우나에서 오래 견딜 수 있나? □ 19 전략 19






여 제 4-1 (pp. 66) ■ 두께 0.2 m, 벽돌벽, 온도 30°C 및 -20°C, 정상상태열속 ■ 풀이: 열저항



강의목표 다중층에서 열저항 총열저항 총괄열전달계수 청관열 제외 전도 대류 29

다중층 열전달량 $Q = \frac{\Delta T}{R_{tot}}$ ■ 열전달량 $R_{tot} = R_{\infty 1} + R_1 + R_2 + R_3 + R_{\infty 2}$ $R_{tot} = \sum R_i$ 5주, 전도 다중층

쉬어가기: 이중유리창의 효용성

- 단열 효과
- 그 이외의 효과들은?

5주, 전도 단일층

총괄열전달계수의 개념

■ 전도, 대류, 복사의 여러 열전달 기구가 복합적으로 작용

 $Q = UA\Delta T$

■ 오염 및 접촉열저항 관여

■ 열교환기 설계의 중요인자

 $Q = \frac{\Delta T}{}$ $\overline{R_{tot}}$

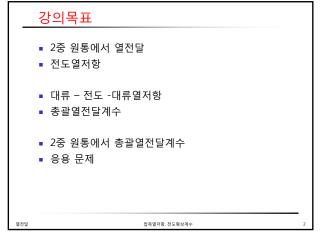
■ 복수 전도 층이 존재

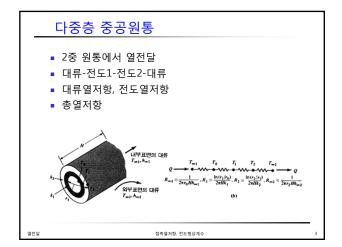
■ 열전달계수의 개념

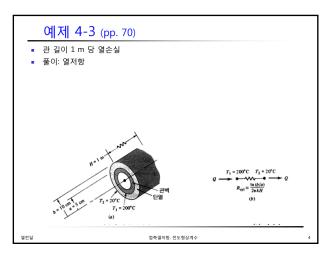
 $U = \frac{1}{AR_{tot}}$

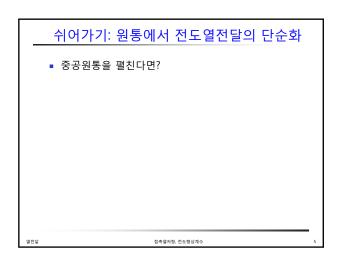
■ 총괄열전달계수는 기준 면 또는 면적의 지시가 필요

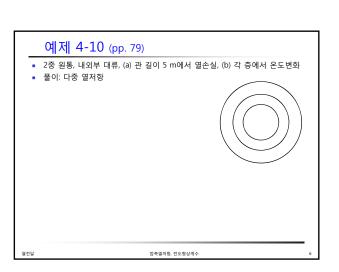
다중층에서 총괄열전달계수 $Q = \frac{\Delta T}{R_{tot}} = UA\Delta T$ ■ 총열저항 $R_{tot} = R_{\infty 1} + R_1 + R_2 + R_3 + R_{\infty 2}$ $R_{tot} = \sum R_i$

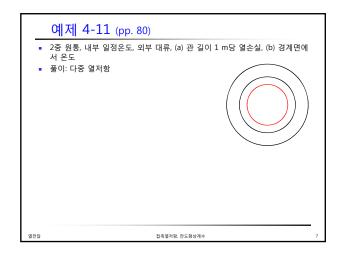

5주, 전도 다중층

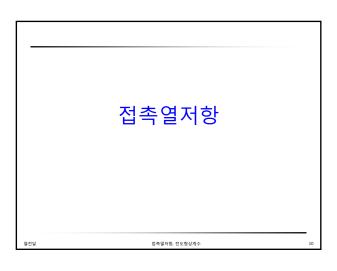

학습점검


- 열저항
- 전도열저항
- 평면벽원통벽
- 대류열저항
- 총열저항
- 복잡한 문제를 단순화/체계화
- 열저항, 열전달량 (열속), 온도
- 총괄열전달계수
 - (대류)열전달계수와 같은 형태로 표시대상 면적의 지시가 필요

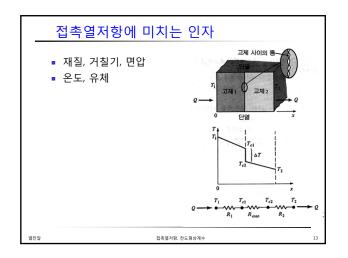

열전달 개요, 전도, 대류

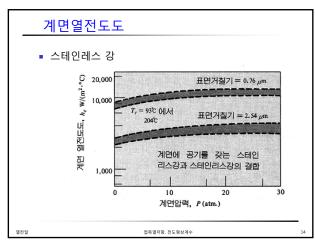

열저항의 계산 ^{열저항의} 1



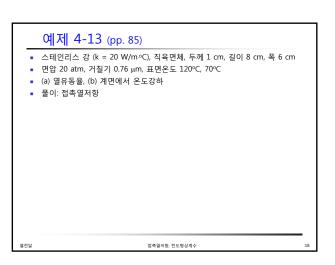







학습점검 ** 총괄열전달계수 ** 전도, 대류 복합조건 ** 단일 열전달계수 ** 면적 지정 필요

강의목표 접촉열저항의 원인 접촉열저항에 미치는 인자 접촉열저항의 응용 해결방안 예제



접촉열저항의 해결 ■ 용접 ■ 용착 ■ 용착

학습점검

- 접촉열저항
- 열전도율이 높은 고체 계면(interface)
- 거칠기, 면압, 온도, 재질, 유체의 함수
- 계면 열전도도

강의목표

- 전도형상계수
- 정의
- 형상에 따른 전도형상계수
- 전도형상계수의 이용
- 예제

열전달 접촉열저항, 전도행상계수

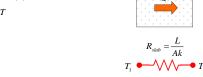
전도형상계수

- 2차원, 3차원 형상의 전도열전달
- 편미분방정식 풀이
- 계산 복잡
- 전도형상계수 도입
- 계산 단순화
- 단위 [m]

 $Q=Sk\Delta T$

열전달 접촉열저항, 전도형상계수

평면벽의 전도형상계수

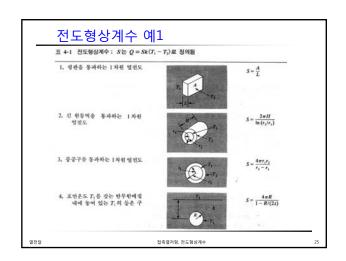

■ 열저항

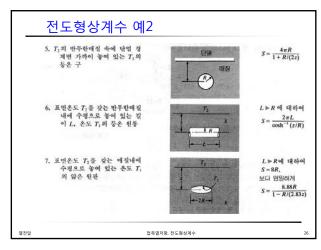
$$Q = Ak \frac{T_1 - T_2}{L} = \frac{\Delta T}{R_{slab}}$$

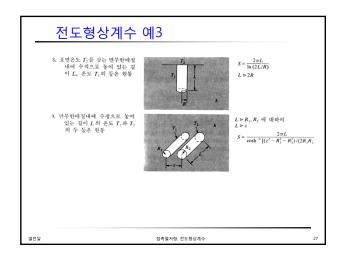
 $R_{slab} = \frac{L}{Ak}$

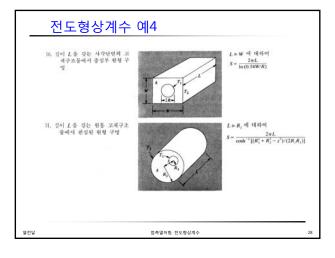
■ 전도형상계수 $Q = Sk\Delta T$

 $S = \frac{A}{L}$

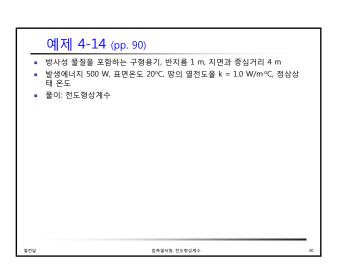


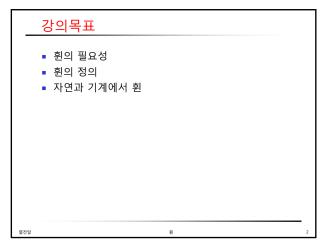

전달 접촉열저항, 전도형상계수


중공원통의 전도형상계수


■ 중공원통

 $Q = Sk\Delta T$ $S = \frac{A}{L}$

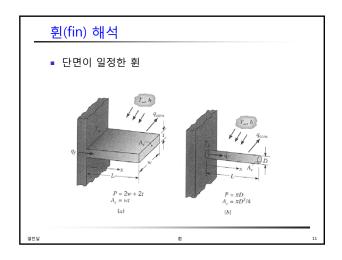


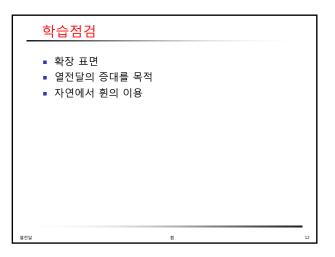


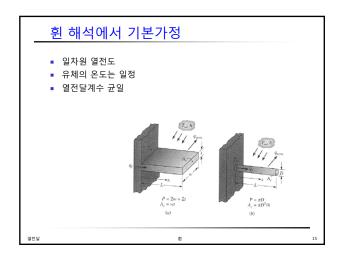


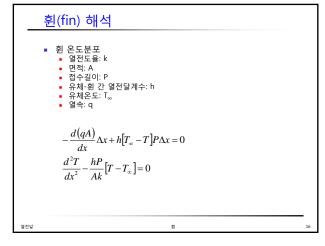
학습점검 전도형상계수 정의 전도형상계수의 단위 전도형상계수의 이용 2차원, 3차원 형상에서 전도 계산 단순화

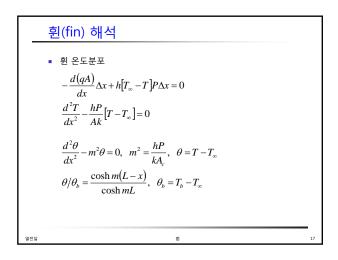
열전달 전축열저항, 전도형상계수 32

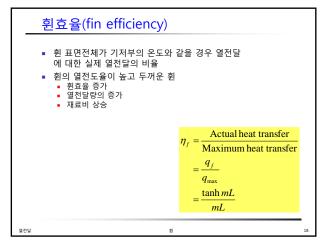


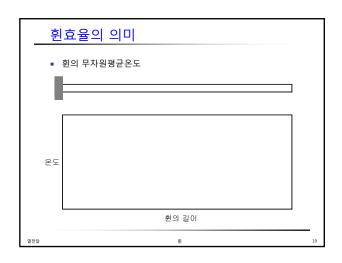


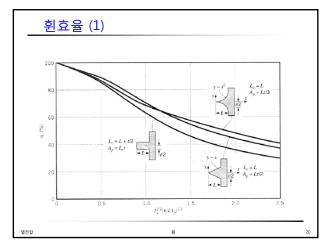


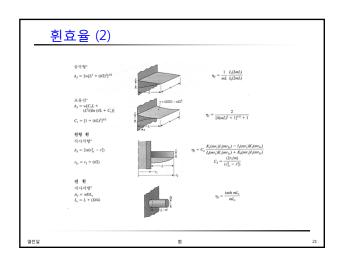


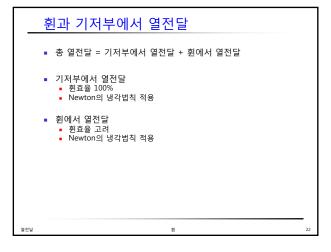


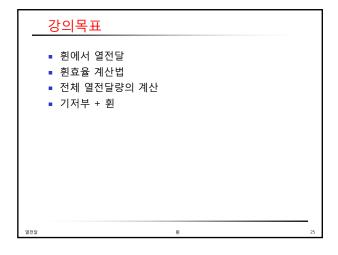

한효율 ^{중건및} 원 13

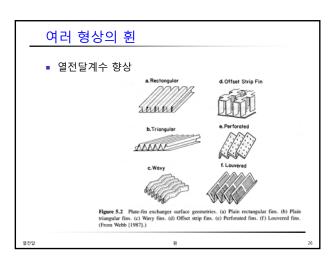


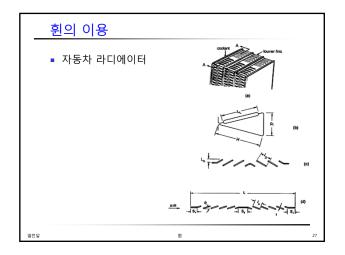


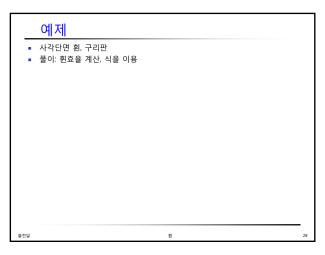


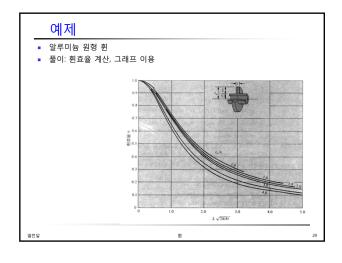


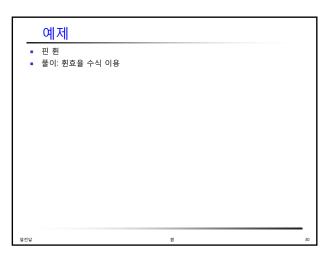




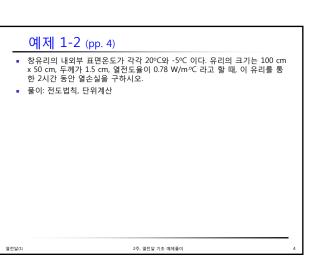






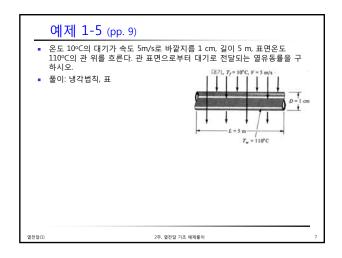


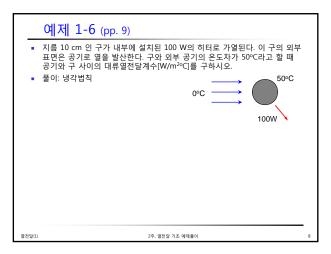
학습점검

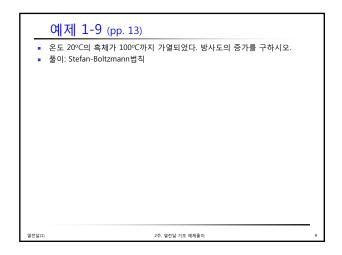

- 휜에서 총열전달
- 휜효율
- 그래프를 이용한 계산
- 식을 이용한 계산
- 총열전달=기저부에서 열전달 + 휜에서 열전달
- 휜의 이용

열전달

기초 열전달 계산 ^{8전달} 제상

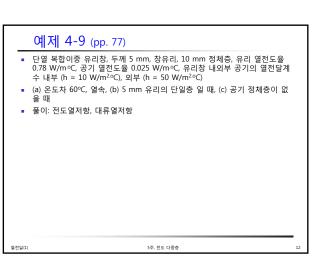

강의목표 • 열전달 기초문제 실습

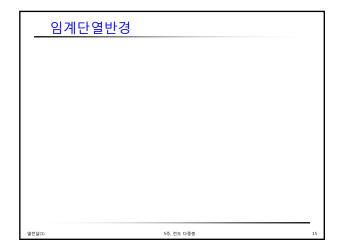

이 지 1-1 (pp. 4) ■ 두께가 25 cm 이고 열전도율이 0.69 W/m°C 인 별돌 담이 한 표면은 20°C 로 다른 표면은 10°C로 유지되고 있다. 이 벽의 표면적이 5 m² 이라고 할 때 열유동률을 구하시오. ■ 풀이: 전도법칙, 표

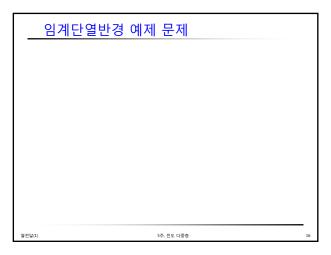


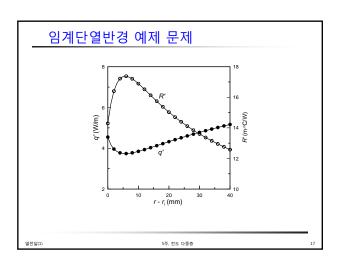
여 저 1-3 (pp. 5) ■ 열전도율이 0.05 W/m²C 인 유리섬유 재질을 단열판으로 사용하여 단열판 양단이 온도차가 150°C 일 때 열손실이 100 W/m²을 넘지 않으려고 한다. 이 경우 단열판의 두께를 구하시오. ■ 풀이: 전도법칙, 단위계산

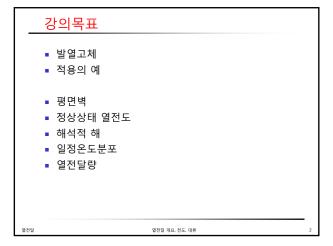
예제 1-4 (pp. 8)		
	40°C의 고온 평판 위를 흐른다. 평균 열전달 판의 표면적 A=2 m²을 통하여 평판에서 공기 오.	
전달(1)	2주, 열전달 기초 예제풀이	6

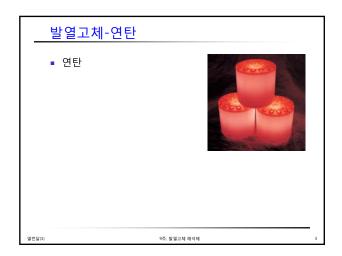


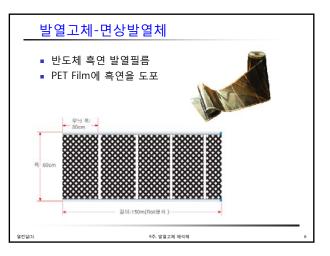


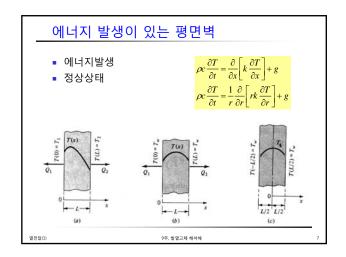


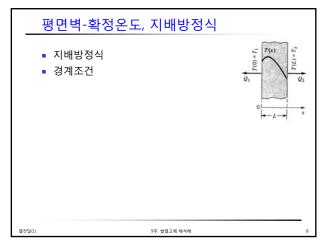


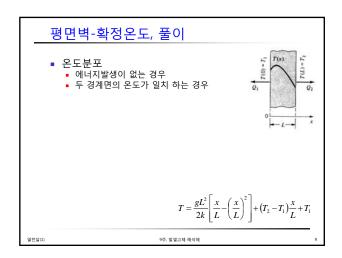

강의목표 의계단열반경의 정의 임계단열반경의 이용 예제

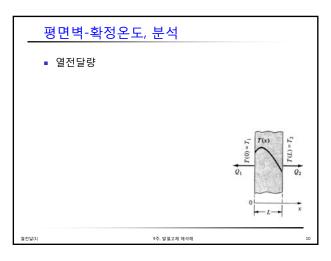


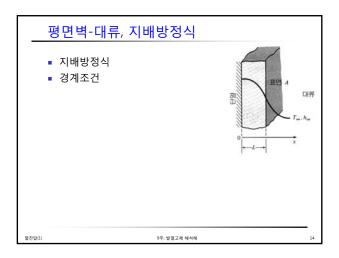

내부에서 열 발생이 있는 고체의 응용

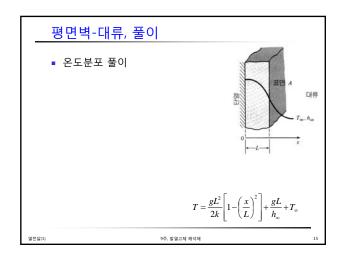


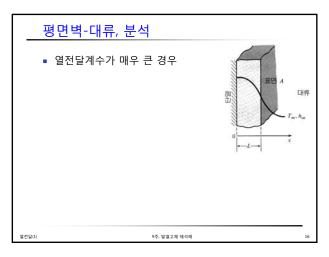


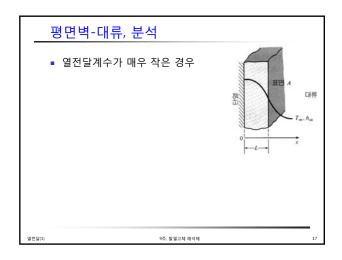


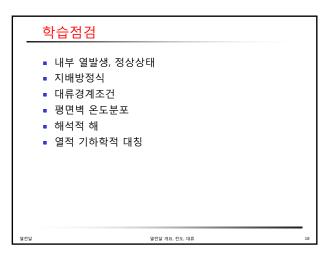


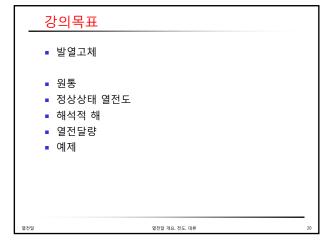


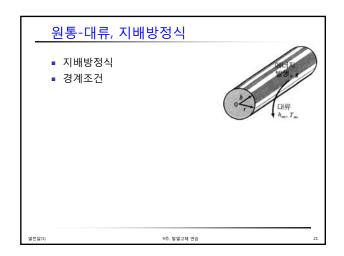


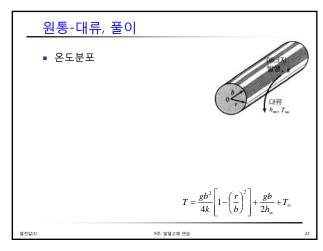

학습점검 내부 열발생, 정상상태 응용 지배방정식, 일정온도조건 명면벽 온도분포 영속 해석적 해

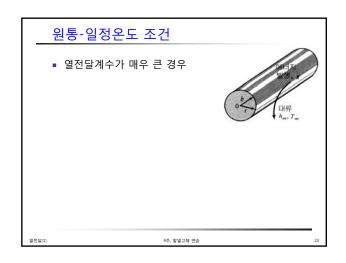


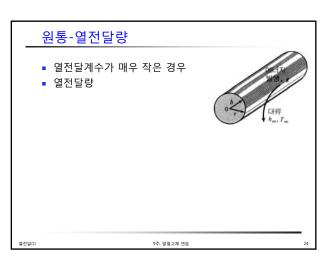

강의목표 발열고체 평면벽 정상상태 열전도 해석적 해 대류경계조건 열전달량 예제

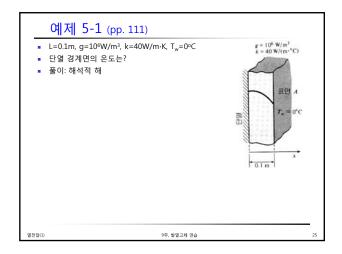


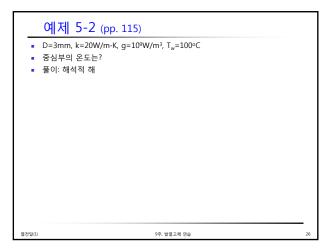


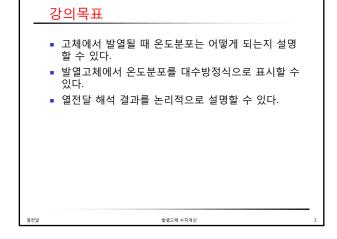




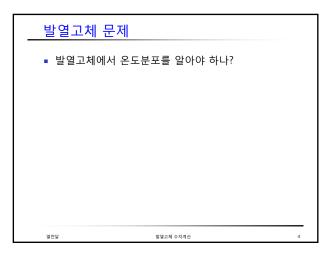

원통 발열고체 ^{원동} 발열고체

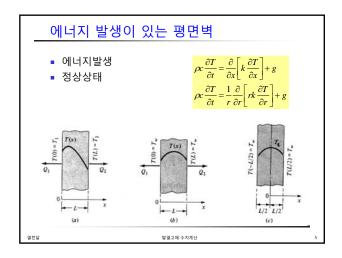


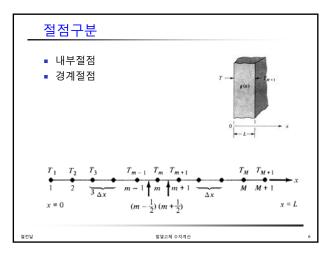


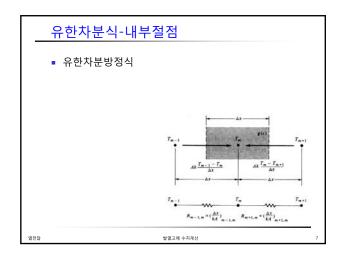


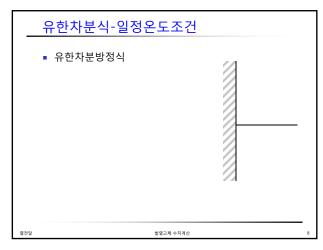
학습점검

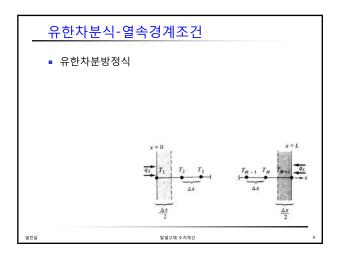

- 내부 열발생, 정상상태
- 원통형 발열고체
- 지배방정식
- 해석적 해

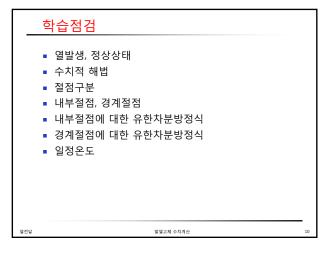

열전달 열전달 개요. 전도. 대류

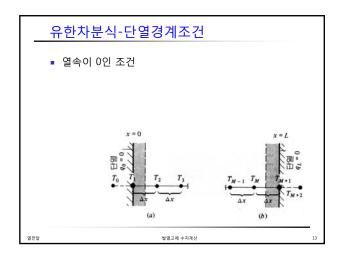

발열고체 수치계산

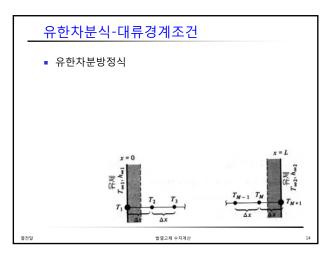


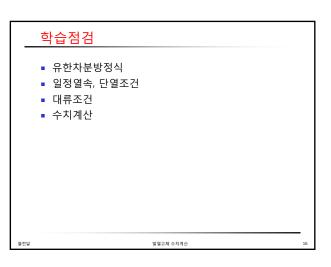




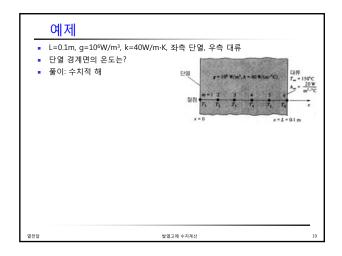


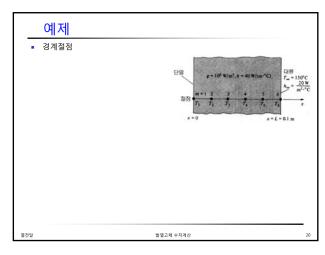


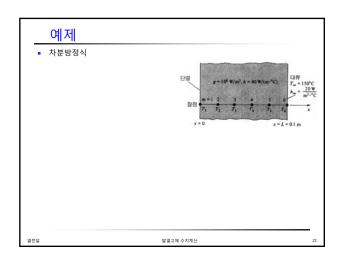



발열고체 수치계산

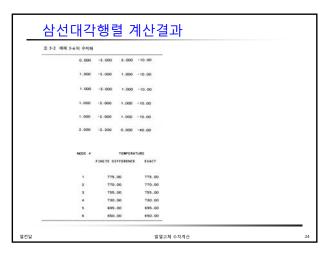
강의목표 단열경계조건 대류경계조건 온도분포의 자료가 주워졌다면, 이 자료로부터 열전 달에 관한 어떤 량을 구할 수 있나? 어떻게 구할 수 있나?



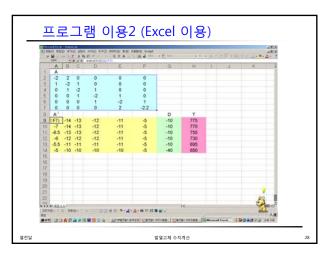




발열고체 수치계산 실습


강의목표 Fym 10cm의 평면벽에서 단위체적당 100kW의 열이 발생 된다. 좌우 벽면이 여러 방식으로 냉각된다. 오도분포는 어떻게 될까? 오도분포를 가장 쉽게 계산하는 방법은?


```
나는 사용 보고 대한 기계 전 대한
```

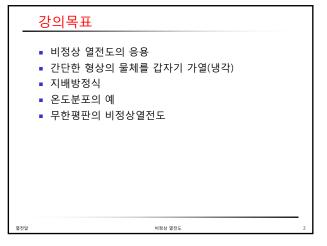


프로그램 이용 (강의자료 이용)

- 컴퓨터실의 앞쪽 computer 3대에 "C:\ Example.EXE" 로 저장되어 있음.
- 또는 해당 PC의 e:\Example.EXE를 설치
- e drive에 "INPUT.DAT"가 있는 디스켓을 넣고,
- e:₩ directory에서 'Example'를 실행
- 출력값은 e:\ directory에 'OUTPUT.DAT'로 저장 됨

l _	Input Data		
	6 0 -2 2 -10 1 -2 1 -10 1 -2 1 -10 1 -2 1 -10 1 -2 1 -10 2 -2.2 0 -40	: 절점의 수(정수) : 계수 : 계수 : 계수 : 계수 : 계수	
	계수 사이에는 'space' 1칸씩 띄움 format은 free format 임 아래한글 등으로 작성시 text format으로 저장하여야 함 이름은 "INPUT.DAT" 절점의 개수는 300 개 까지 가능 함		
열전달		발열고체 수치계산	26

Output Data 1 0.7750E+03 2 0.7700E+03 3 0.7550E+03 4 0.7300E+03 5 0.6950E+03 6 0.6500E+03 발열고체 수치계산

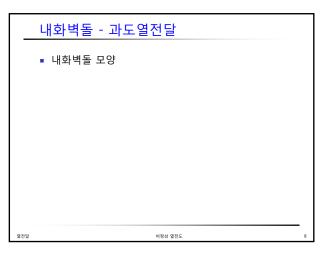

과제제출

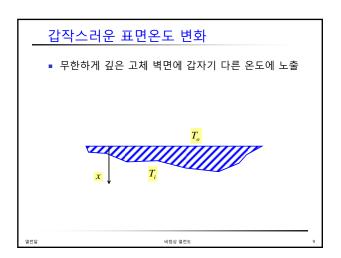
- 문제
- 해석적 해
- 수치적 해

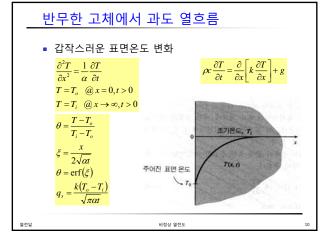
 - 유한차분방정식 행렬식 입력 및 출력 data
- 해석적 해와 수치적 해의 비교
 - x T graph 계산오차
- 고찰

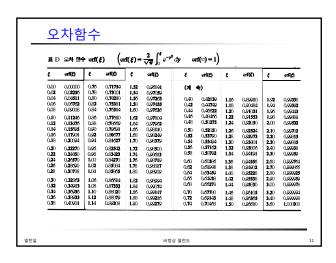
발열고체 수치계산

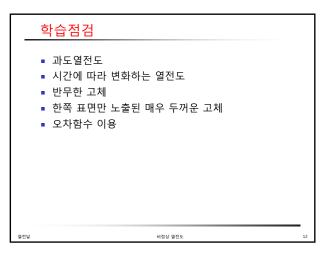
비정상 열전도 응용 및 기초

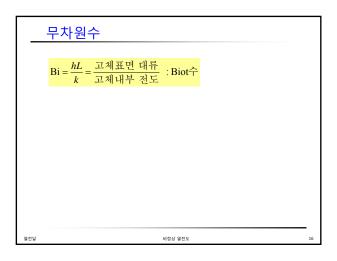


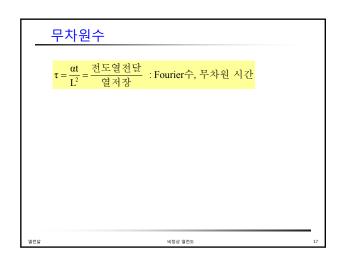


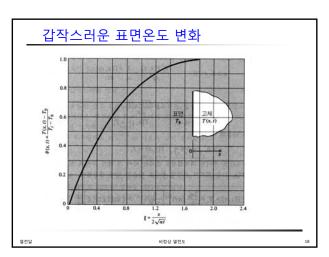


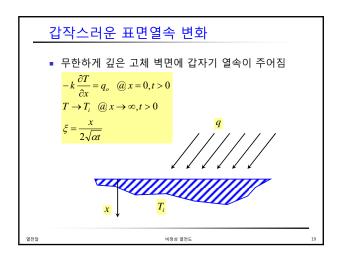


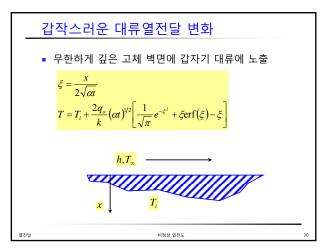


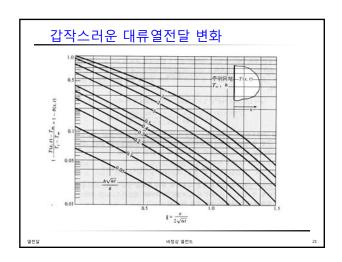


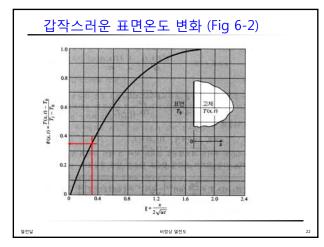


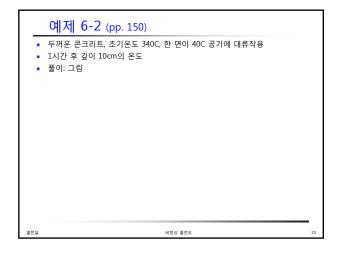

비정상 열전도 무차원수

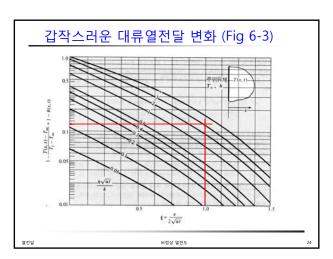

학습목포 비정상 열전도 관련 무차원수 무한평판에 갑작스런 열적 조건이 작용 해석방법 해석방법 대청상 열전도 관련 무차원수 대청성 열전도 관련 무차원수 대청성 열전도 관련 무차원수 대청성 열전도 관련 무차원수

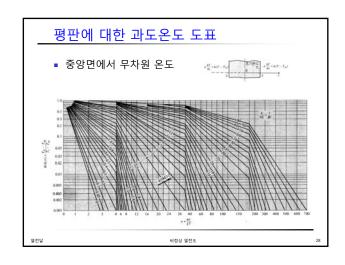

무차원수 $\theta = \frac{T - T_o}{T_i - T_o} : 무차원 온도$ $X = \frac{x}{L} : 무차원 좌표$

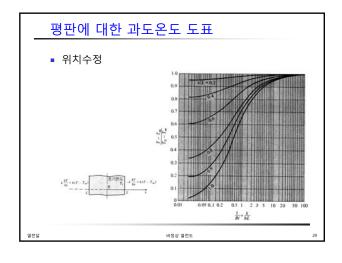


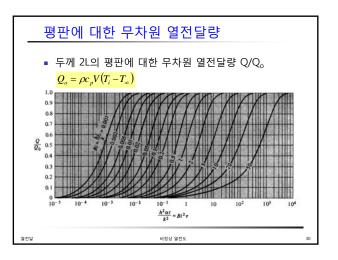


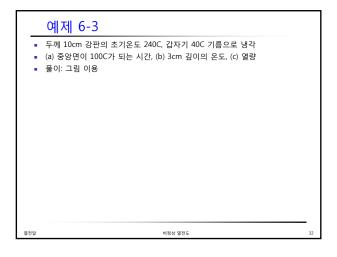


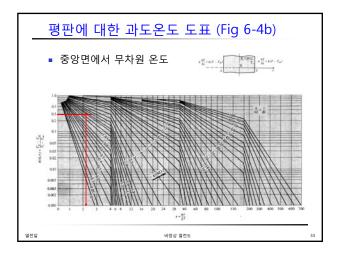


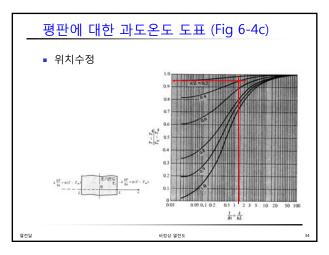


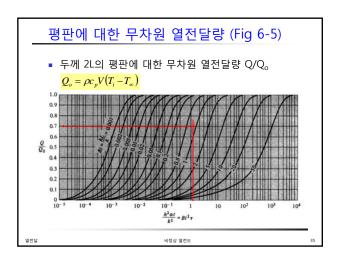


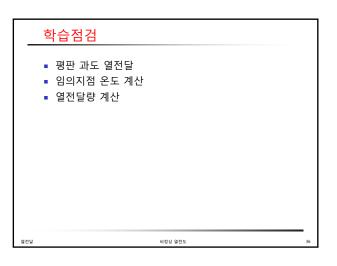

학습점검 무한평판 과도 열전달 무차원수 Biot 수 대류에 대한 전도 열저항의 비 Fourier 수 무차원 시간 표와 Graph 온도, 열전달량

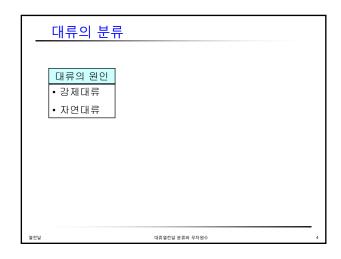












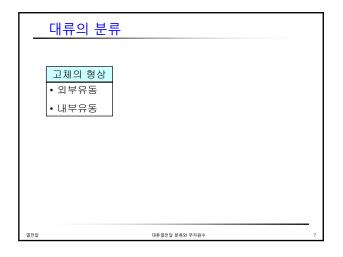
대류열전달의 분류와 기초

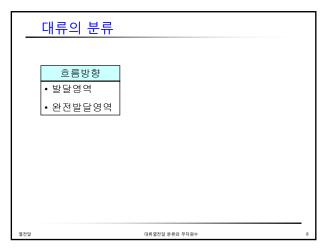
강의목표 전도, 복사와 대류를 구분할 수 있다 대류의 정의를 설명할 수 있다 대류의 분류를 설명할 수 있다 강제대류와 자연대류를 구분할 수 있다 경계층을 구조를 설명할 수 있다 충류와 난류의 특성을 설명할 수 있다

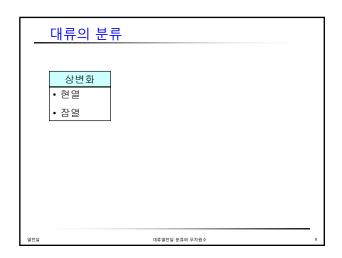
대류
 ● 유체
 ● 대류의 정의

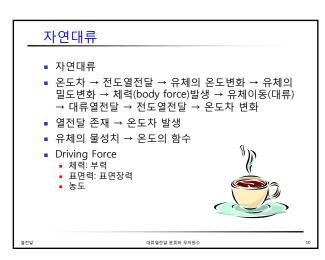
대류의 분류

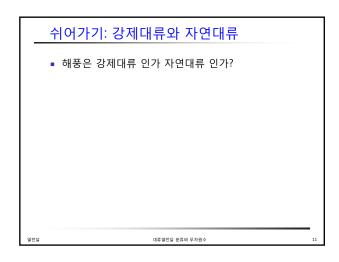
유동형태

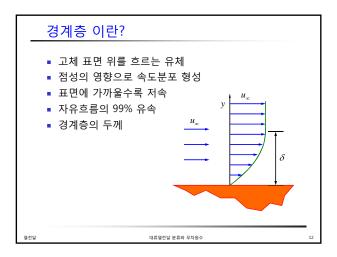

· 총류

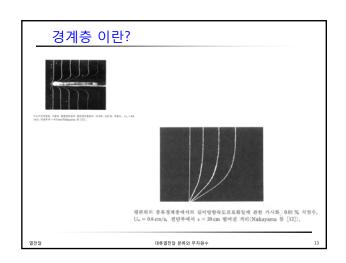

· 난류

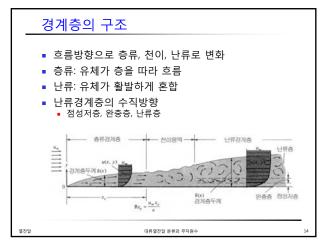

GRANG 본류와 무자원수

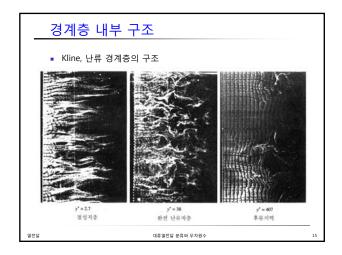

5

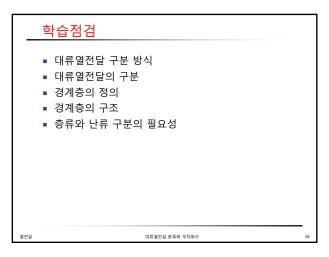

다류의 분류
상의 수
• 단상(single phase)
• 다상(multi-phase)

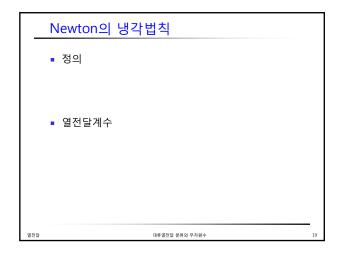


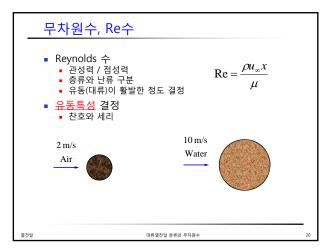


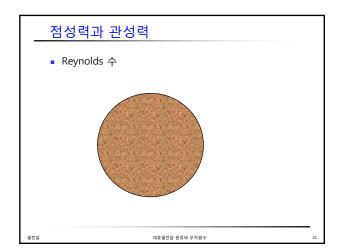


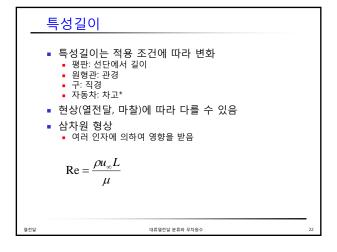


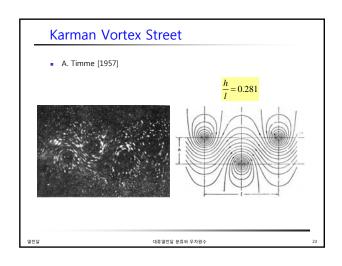









대류열전달 관련 무차원수


강의목표 경계층을 구조를 설명할 수 있다 경계층에 관련한 무차원수의 정의와 물리적 의미를 설명할 수 있다



무차원수, Pr수

- Prandtl 수
 운동량확산 / 열확산
 점성력과 열 확산이 상대적으로 활발한 정도

 - 유체의 물성치
 속도/열 경계층의 두께의 비를 결정
- 유체
 - 고 Pr수: 엔진오일, 기름 류 중 Pr수: 물(~7), 공기(~0.7) 저 Pr수: 액체금속

$$\Pr = \frac{v}{\alpha} = \frac{\mu c_p}{k}$$

대류열전달 분류와 무차원수

무차원수, Nu수

- Nusselt 수
 대류열전달/전도열전달
 전도열전달 대비 대류열전달의 활발한 정도
 - Biot수와 비교
 - 특성길이

$$Nu = \frac{hL}{k} \propto \frac{Ah\Delta T}{kA\frac{\Delta T}{L}}$$

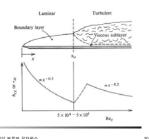
학습점검

- 무차원수의 필요성
- Reynolds 수
- Prandtl 수
- Nusselt 수
- 정의, 물리적 의미
- 응용

대류열전달 분류와 무차원수

대류열전달 성능인자

대류열전달 분류와 무차원수


강의목표

- 항력계수의 정의를 설명할 수 있다
- 열전달계수의 정의과 물리적 의미를 설명할 수 있다
- 경계층에 관련한 중요한 인자를 계산할 수 있다

대류열전달 분류와 무차원수

층류와 난류의 판별

- 층류와 난류 결정: 임계 Reynolds 수
- 평판 외부: Re_{cr} ~ 10⁵
- 평행평판 내부: Re_{cr} ~ 1,000
- 원관 내부: Re_{cr} ~ 2,000
- 특성길이의 방향
- 형상에 따라 다름

대류열전달 분류와 무차원수

항력계수

■ 전단응력(shear stress)

$$\tau = \mu \frac{\partial u}{\partial y} \bigg|_{y=0} = c \frac{\rho u_{\infty}^2}{2}$$

- 항력계수(drag coefficient)
 속도구배가 중요
 속도경계층의 두께가 마찰력에 밀접한 영향
 [마찰저항] + 형상저항

$$c = \frac{2v}{u_{\infty}^2} \frac{\partial u}{\partial y} \bigg|_{y=0}$$

대류열전달 분류와 무차원수

쉬어가기: 항력

■ 물고기

대류열전달 분류와 무차원수

열전달계수

■ 열속(heat flux)

$$q = k \frac{\partial T}{\partial y} \bigg|_{y=0} = h \big(T_{\infty} - T_{w} \big)$$

대류열전달 분류와 무차원수

열전달계수

- 열전달계수(heat transfer coefficient)

 - 을 (한글/게구(Iteat transfer Coefficient)

 온도구배가 중요

 열경계층의 두께가 열전달률에 밀접한 영향

 마찰저항 → 열전달

 형상저항 → 열전달

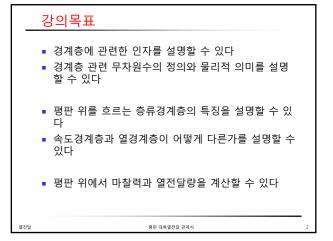
$$h = k \frac{\left[\partial T / \partial y \right]_{y=0}}{T_{\infty} - T_{w}}$$

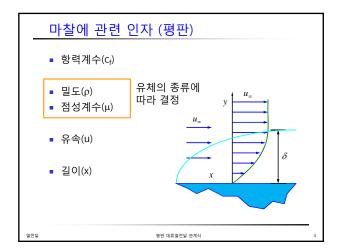
대류열전달 분류와 무차원수

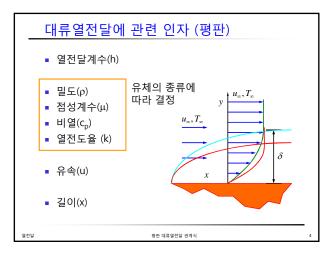
예제 7-1

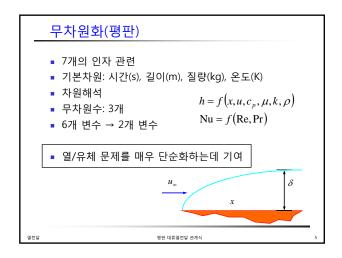
- 평판 위로 300K의 공기가 1m/s로 대류
- 층류에서 난류로 천이가 일어나는 길이
- 풀이: 천이 Reynolds 수

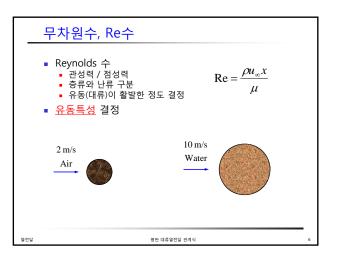
대류열전달 분류와 무차원수


예제 7-2


- 평판 위로 300K의 공기가 2m/s로 대류
- 평균 항력계수로부터 항력계산
- 풀이: 항력계수의 정의


에 제 7-3 - 엔진오일의 Pr 수 - 풀이: Pr 수의 정의


학습점검 영전달계수 단위면적 당, 단위 온도차 당 열전달율 항력계수 동압에 대한 마찰응력의 비율 계산 방법


대류열전달 관계식

쉬어가기: 특성길이

- 사람의 방열
- 열교환기의 방열

평판 대류열전달 관계식

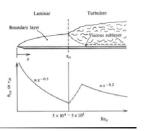
무차원수, Pr수

- Prandtl 수
 운동량확산 / 열확산
 점성력과 열 확산이 상대적으로 활발한 정도
 유체의 물성치
 속도/열 경계층의 두께의 비를 결정
- - 고 Pr수: 엔진오일, 기름 류
 중 Pr수: 물(~7), 공기(~0.7)
 저 Pr수: 액체금속

$$\Pr = \frac{v}{\alpha} = \frac{\mu c_p}{k}$$

평판 대류열전달 관계식

무차원수, Nu수


- Nusselt 수
 대류열전달/전도열전달
 전도열전달 대비 대류열전달의 활발한 정도
 Biot수와 비교
 특성길이

$$Nu = \frac{hL}{k} \propto \frac{Ah\Delta T}{kA\frac{\Delta T}{L}}$$

평판 대류열전달 관계식

층류와 난류의 판별

- 층류와 난류 결정: 임계 Reynolds 수
- 평판 외부: Re_{cr} ~ 10⁵
- 평행평판 내부: Re_{cr} ~ 1,000
- 원관 내부: Re_{cr} ~ 2,000
- 특성길이의 방향
- 형상에 따라 다름

평판 대류열전달 관계식

항력계수

전단응력(shear stress)

$$\tau = \mu \frac{\partial u}{\partial y}\bigg|_{y=0} = c \frac{\rho u_{\infty}^2}{2}$$

- 항력계수(drag coefficient)
 속도구배가 중요
 속도경계층의 두께가 마찰력에 밀접한 영향
 [마찰저항] + 형상저항

$$c = \frac{2v}{u_{\infty}^2} \frac{\partial u}{\partial y} \bigg|_{y=0}$$

평판 대류열전달 관계식

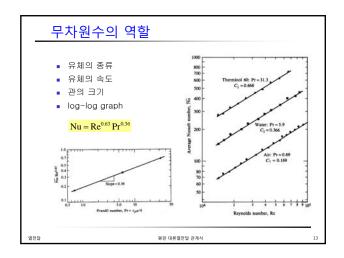
열전달계수

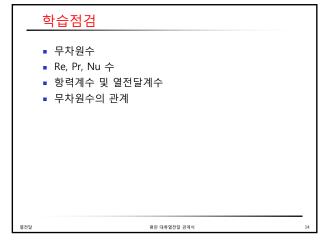
열속(heat flux)

$$q = k \frac{\partial T}{\partial y} \bigg|_{y=0} = h \big(T_{\infty} - T_{w} \big)$$

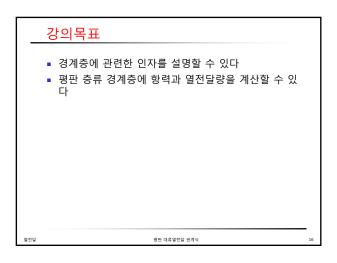
- 열전달계수(heat transfer coefficient)

 - 교 연결 세구(inat transfer Coefficient)

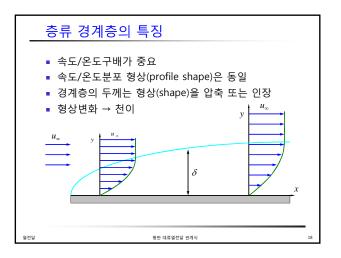

 온도구배가 중요

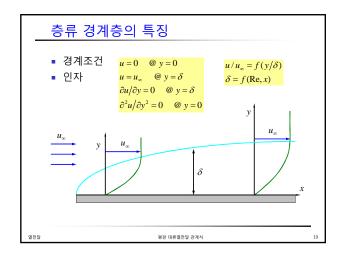

 열경계층의 두께가 열전달률에 밀접한 영향

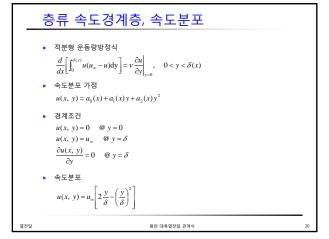
 마찰저항 → 열전달


 형상자항 → 열전달

$$h = k \frac{\left[\partial T / \partial y \right]_{y=0}}{T_{\infty} - T_{w}}$$

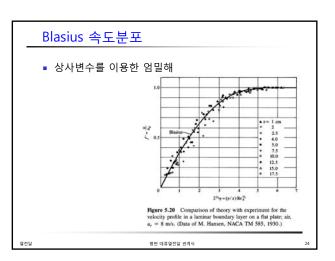





평판 층류경계층 _{영전당 영란 대류였던당 라계식} 15

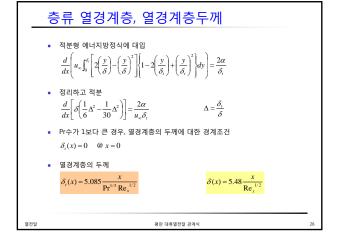
경계층 해석법 ■ 보존방정식 → 경계층방정식 → 상사변수 → 상미분 방정식 ■ 적분형방정식 → 속도/온도분포 가정 → 미분방정식 ■ 실험 ■ 수치계산

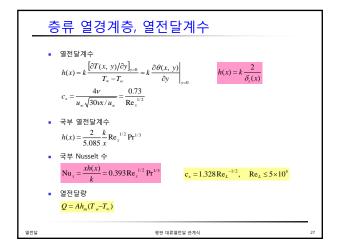


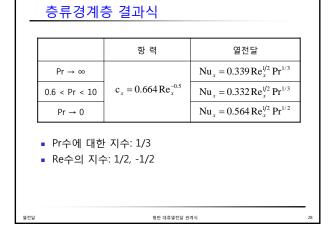


흥류 속도경계층, 경계층두께

• 적분형 운동량방정식에 대입
$$\frac{d}{dx} \left(\int_{0}^{\delta(x)} u_{\kappa} \left[2 \frac{y}{\delta} - \left(\frac{y}{\delta} \right)^{2} \right] \left\{ u_{\kappa} - u_{\kappa} \left[2 \frac{y}{\delta} - \left(\frac{y}{\delta} \right)^{2} \right] \right\} dy \right) = \frac{2 \nu u_{\kappa}}{\delta(x)}$$
• 정리하고 적분
$$\delta d\delta = \frac{15 \nu}{u_{\kappa}} dx$$
• 경계층의 두께에 대한 경계조건
$$\delta(x) = 0 \quad @ \ x = 0$$
• 경계층의 두께
$$\frac{\delta(x)}{x} = \sqrt{\frac{30}{\text{Re}_{x}}} = \frac{5.48}{\text{Re}_{x}^{1/2}}$$







증류 열경계층, 온도분포 ■ 적분형 에너지방정식 $\frac{d}{dx} \left[\int_0^x u(1-\theta) dy \right] = \alpha \frac{\partial \theta}{\partial y} \bigg|_{y=0} \quad 0 < y < \delta,$ ■ 온도분포 가정 $\theta(x,y) = a_0(x) + a_1(x)y + a_2(x)y^2 \qquad \theta(x,y) = \frac{T(x,y) - T_w}{T_w - T_w}$ ■ 경계조건 $\theta(x,y) = 0 \quad @ y = 0$ $\theta(x,y) = 1 \quad @ y = \delta,$ $\frac{\partial \theta(x,y)}{\partial y} = 0 \quad @ y = \delta,$ ■ 속도 및 온도분포

 $u(x, y) = u_{\infty} \left[2 \frac{y}{\delta} - \left(\frac{y}{\delta} \right)^{2} \right] \qquad \delta = \sqrt{\frac{30w}{u_{\infty}}} \qquad \theta(x, y) = 2 \left(\frac{y}{\delta_{t}} \right) - \left(\frac{y}{\delta_{t}} \right)^{2}$

학습점검 명판 충류경계층 항력 열전달계수 상호 관계 생정돼 생전되 왕판 대류됐건도 관계식 29

강의목표

- 평판 층류 경계층에 항력과 열전달량을 계산할 수 있 다
- 평판 난류 경계층에 항력과 열전달량을 계산할 수 있 다
- 평편한 면에 유체가 흐른 경우 마찰과 열전달을 계산 할 수 있다.

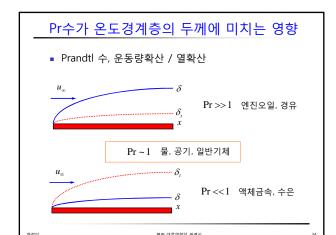
층류/난류경계층 결과식

	층 류	난 류
	Pr ~ 1	$5x10^5 < Re_x < 10^7$
항 력	$c_x = 0.664 \text{Re}_x^{-0.5}$	$c_x = 0.0592 \text{Re}_x^{-0.2}$
열전달	$Nu_x = 0.332 Re_x^{1/2} Pr^{1/3}$	$Nu_x = 0.0296 Re_x^{0.8} Pr^{1/3}$

- 항력계수: Re 수의 함수, Nu수: Re 및 Pr수의 함수
- 물 및 공기에 적용
- Re 수에 대한 지수: 0.5(층류), 0.8(난류)
- Pr수에 대한 지수: 1/3
- Reynolds Analogy 성립

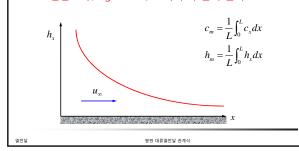
전달 평판 대류열전달 관계식

Reynolds Analogy


- 열전달-마찰의 상관관계
- 유체의 종류에 자유로움
- 열전달로부터 이상적인 항력수준 예측
- 단순유동인 경우 상사관계 성립
- 공학적 가치

$$St_x Pr^{2/3} = \frac{1}{2}c_x$$

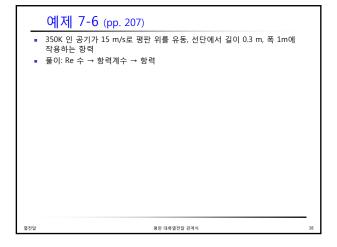
$$St_x = \frac{Nu_x}{Pr Re_x}$$


$$j = St_x Pr^{2/3}$$

결전달 평판 대류열전달 관계식

평균값과 국부값

- 항력 및 열전달은 고체 위치의 함수
- 공학계산 → 평균값 유용
- 선단효과(edge effect) → 루우버 휜의 원리

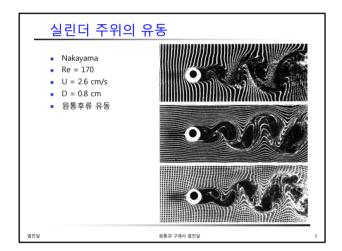


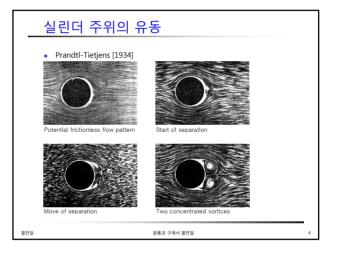
쉬어가기: 열전달에 효과적인 유동특성

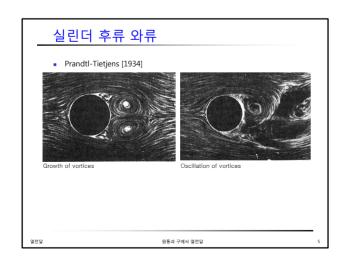
■ 층류

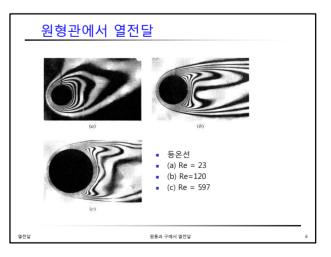
난류

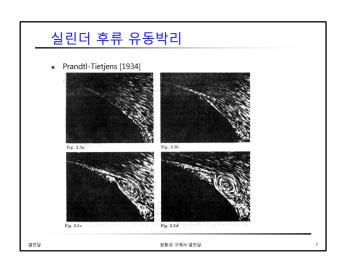
이 저 7-4 (pp. 206) 국부 열전달관계식에서 평균 열전달관계식을 구하시오. 품이: 국부열전달 관계식의 구간적분

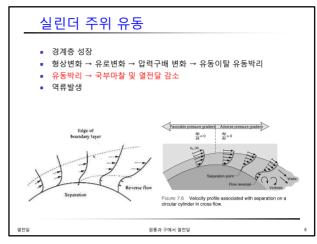

학습점검

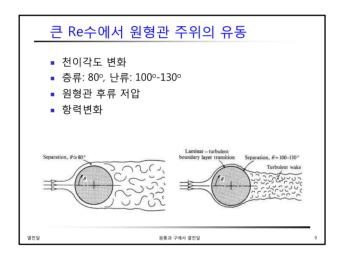

- 층류경계층과 난류경계층
- Reynolds Analogy 정의
- Reynolds Analogy의 활용
- 열전달계수의 계산

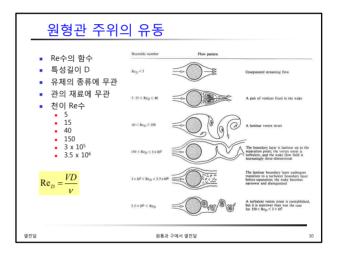

열전달 평판 대류열전달 관계식 39

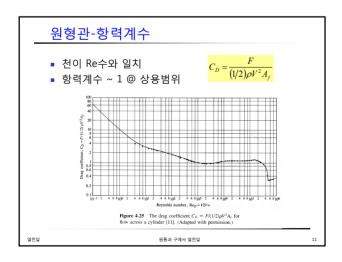

원통과 구에서 유동

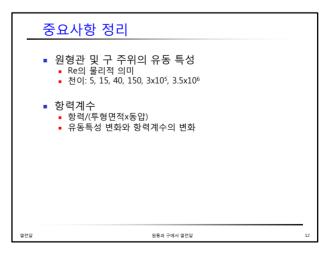

강의목표 ■ 물체 주위의 유동에 영향을 주는 인자는 무엇인가? ■ 유동특성에서 Reynolds 수의 역할은? ■ Reynolds 수가 변화함에 따라 유동 특성을 설명할 수 있다 ■ 원통의 항력을 계산할 수 있다

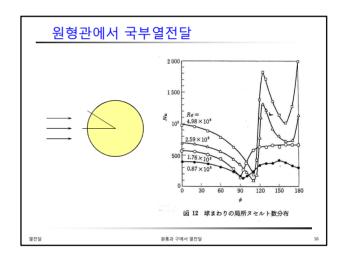


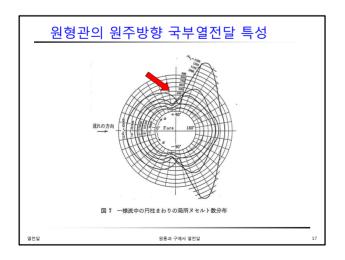


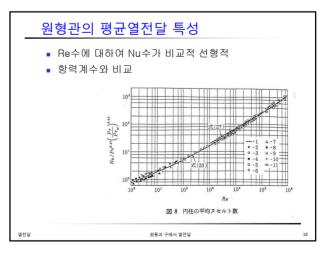




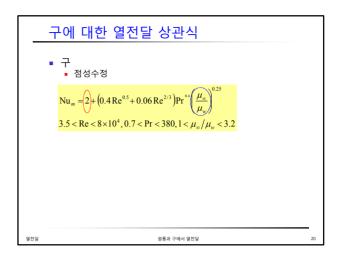


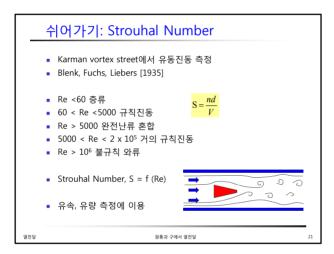

학습점검 원통과 구 주위 유동 유동특성 변화-천이 항력계수 항력의 계산

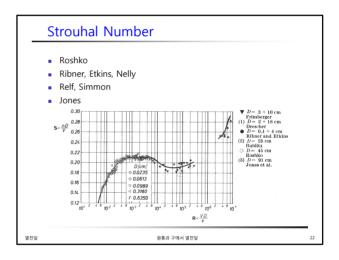


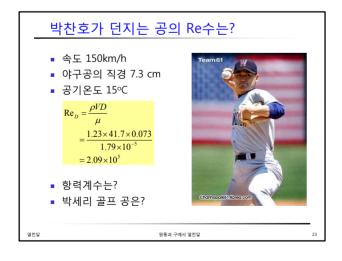

강의목표

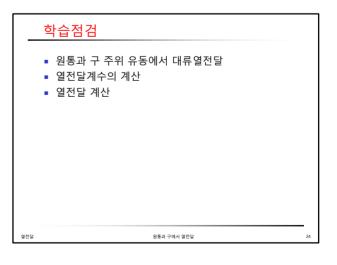
- 원통과 구에서 열전달에 미치는 주요인자는?
- 원형 관에서 원통과 구에서 국부 열전달계수의 특성을 이해할 수 있다
- 원통과 구에서 열전달량의 계산할 수 있다

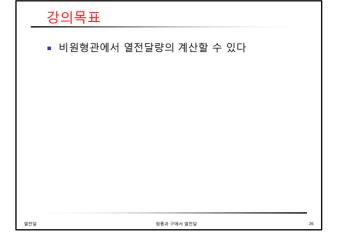

열천달 원통과 구에서 열천달 15

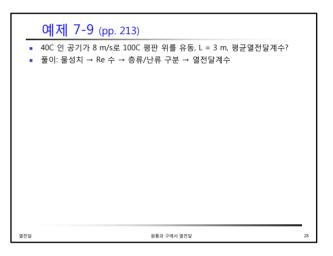


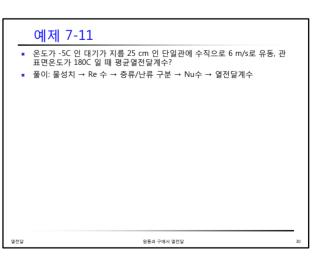





원형관에 대한 열전달 상관식 ■ 원형관 (Churchill과 Bernstein) ■ Re \rightarrow 0 인 경우 (전도) Nu_m = 0.3 + 0.62 Re^{1/2} Pr^{1/3} $\left[1 + \left(\frac{Re}{282,000}\right)^{5/8}\right]^{4/5}$ $\left[10^2 < Re < 10^7, Re Pr > 0.2\right]$ Re = $\frac{u_\infty D}{\mu}$



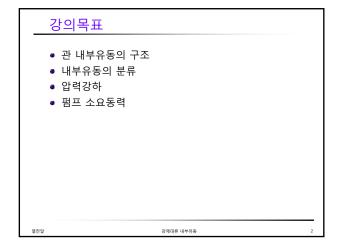


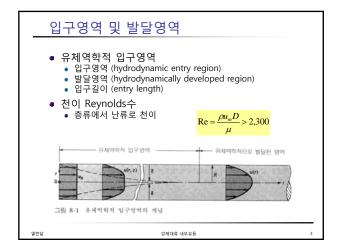

비원형관에서 열전달

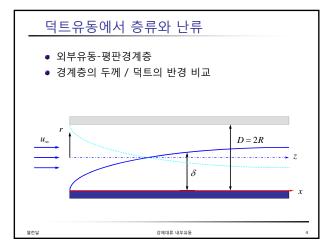
이지 7-10 ■ 40C 인 공기가 8 m/s로 100C 평판 위를 유동, L = 3 m, 폭 1m, 전열량? ■ 풀이: 열전달계수, Newton의 냉각법칙 → 전열량

예제 7-12

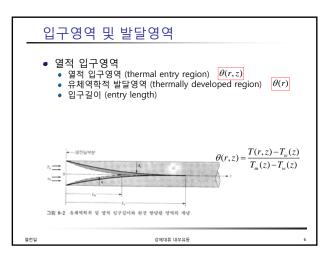
- 온도가 -5C 인 대기가 지름 25 cm 인 단일관에 수직으로 6 m/s로 유동, 관 표면은도가 180C 일 때, 관 길이 1m에 대한 열전달량?
- 풀이: 열전달계수, Newton의 냉각법칙 → 열전달량


열천달 원통과 구에서 열전달 31


학습점검


- 원형관에 직교하는 흐름에서 강제대류 열전달
- 국부열전달계수 특성: 90부근에서 최저
- 평균열전달계수: Churchill과 Bernstein 식
- 구에 대한 강제대류 열전달
- 전도극한
- 기타형상: Re수와 특성길이 정의 변경
- Table 이용

열전달 원통과 구에서 열전달 32


강제대류 내부유동 기초

혼합평균유체온도

- 유체의 온도가 x, r 방향으로 변화
- 유체의 대표온도가 필요

$$T_m(z) = \frac{\int\limits_0^R \rho c_p u(r) T(r,z) (2\pi r) dr}{\int\limits_0^R \rho c_p u(r) (2\pi r) dr}$$

압력강하-마찰계수

- 관 마찰
- 관 길이 및 동압에 비례
- 관 직경에 반비례

$$\Delta P = f \frac{L}{D} \frac{\rho u_m^2}{2} \quad [Pa]$$

펌프동력

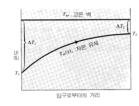
- 펌프동력
 - 체적유량 x 압력강하
- 마찰에 대한 펌프동력

$$\dot{W} = \dot{V}\Delta P = fA_c \frac{L}{D} \frac{\rho u_m^3}{2} \quad [W]$$

열전달계수

- 열속
- 구체의 열전도율
- 열전달계수
- 완전발달영역의 열전달계수

$$h(z) = -\frac{k}{T_m(z) - T_w(z)} \frac{\partial T(r, z)}{\partial r} \bigg|_{r=R} \longleftrightarrow \theta(r, z) = \frac{T(r, z) - T_w(z)}{T_m(z) - T_w(z)}$$


$$h(z) = -k \frac{\partial \theta(r, z)}{\partial r} \bigg|_{r=R}$$

$$h = -k \frac{\partial \theta(r)}{\partial r} \bigg|_{r=R}$$

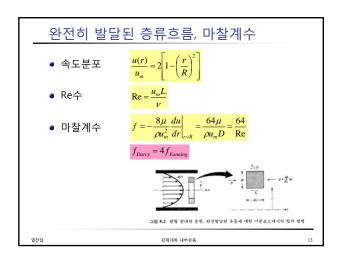
 $q = -k \frac{\partial T(r, z)}{\partial r} \quad [W/m^2]$

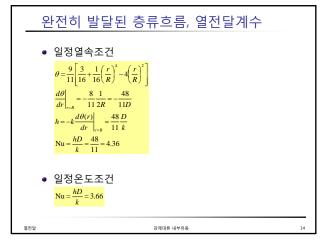
대수평균온도차

- 유체와 고체벽의 온도차가 거리에 따라 변화
- 대수평균온도차, 산술평균온도차
- 입구와 출구의 온도차가 큰 경우 대수평균이 타당

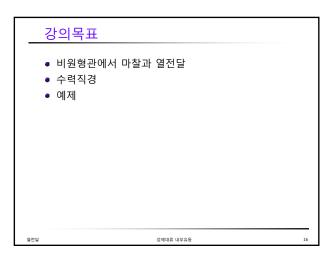
 $\Delta T_{\rm ln} = \frac{\Delta T_1 - \Delta T_2}{\ln(\Delta T_1 / \Delta T_2)}$ $\Delta T_{AM} = \frac{1}{2} (\Delta T_1 + \Delta T_2)$ if $\Delta T_1/\Delta T_2 \le 0.5, \Delta T_{AM}/\Delta T_{ln} \le 1.014$

무차원수

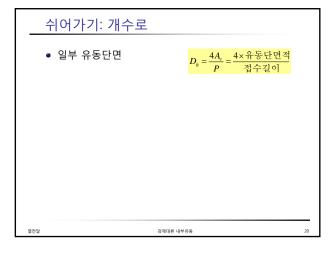

- 특성속도 → u_m
- 특성길이 → L

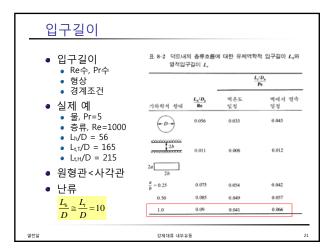

Re =
$$\frac{u_m L}{v} = \frac{u_m^2 / L}{v u_m / L^2} = \frac{\text{판성력}}{\text{점성력}}$$
Pr = $\frac{c_p \mu}{k} = \frac{v}{\alpha} = \frac{\text{운동량확산율}}{\text{열확산율}}$

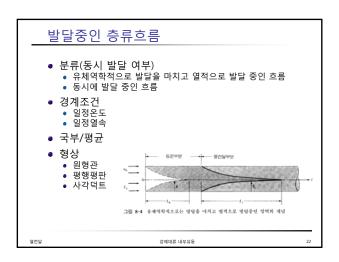
$$Pr = \frac{c_p \mu}{I} = \frac{v}{I} = \frac{\text{운동량확산율}}{\text{어제 II S$$


$$Nu = \frac{hL}{k} = \frac{h\Delta T}{k\Delta T/L} = \frac{\text{unfg}\Delta E}{\Delta T = \frac{h\Delta T}{\Delta T}}$$

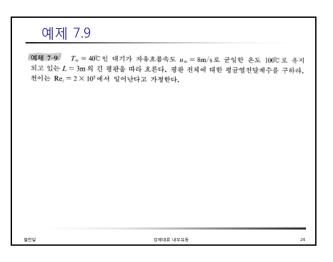
 $\mathrm{St} = rac{h}{
ho c_{_{p}} u_{_{m}}} = rac{h\Delta T}{
ho c_{_{p}} u_{_{m}} \Delta T} = rac{\mathrm{대류열속}}{\mathrm{유체흐름의 열전달용량}}$

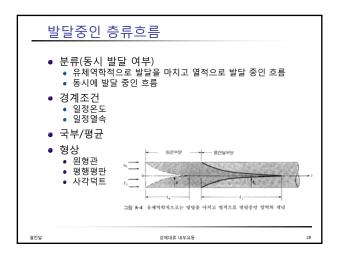


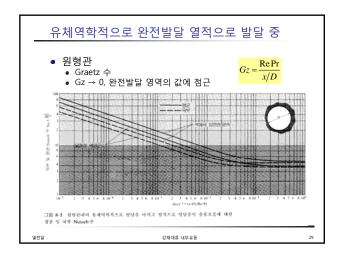

비원형관 내부유동

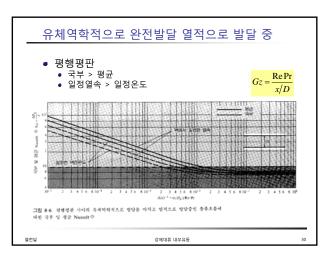


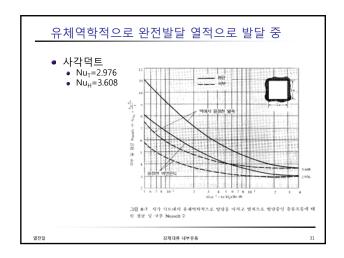
각종 형태의 단면을 갖는 덕트 내의 흐름 요 8-1 각종 형태의 단면을 갖는 덕분내의 문체역학 적 및 철적으로 발달된 양약에 대한 Nesselt수와 다 • 수력직경 비원형관을 유체역학적으로 등가인 원형관의 상당직경으로 환산 \circ 유동이 형성되는 단면적
 유체역학적으로 마찰을 주는 단면상 3.54 4.002 60.22 의 길이 $2b\prod_{1}\sum_{2g}^{gg}\frac{19}{2g}+\frac{\sqrt{3}}{2}$ 2.69 XIII SUM ● 원형관 D_h = D ● 정사각형관 D_h = L $2b \prod_{3a} \frac{2b}{3a} = 1$ 2.976 3.608 56.91 $D_h = \frac{4A_c}{P} = \frac{4 \times 유동단면적}{접수길이}$ 26 2e 1 5.597 6.690 82.34 777777777 \$ = 0 4.841 5.385 96.00 (3-b) 강제대류 내부유동

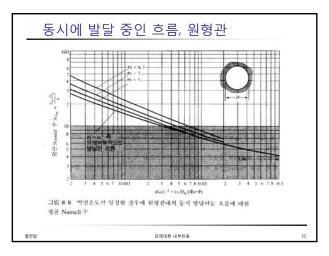


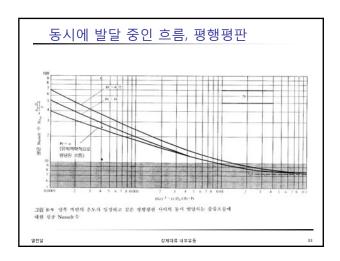

이 지 7.7 대기압하에서 평균온도 77℃인 공기가 9m/s의 속도로 평관에 따라 호른다. - 충류경제충에 대한 평관의 전연으로부터의 거리의 함수로서 국부인전당제수와 평균열전 단계수를 그래프로 나타내어라.

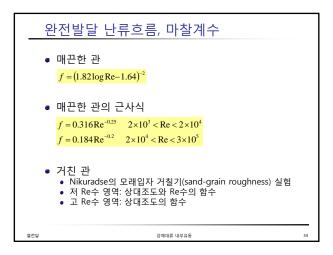


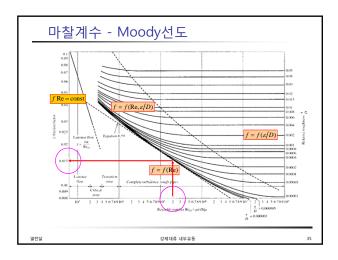

학습점검 무차원수의 필요성? Reynolds 수? Nusselt 수? Prandtl 수? 대수평균온도차? 대향류, 평행류, 직교류?

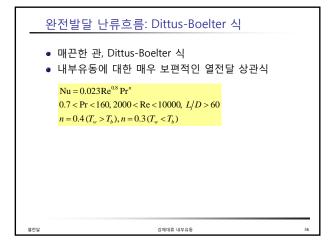


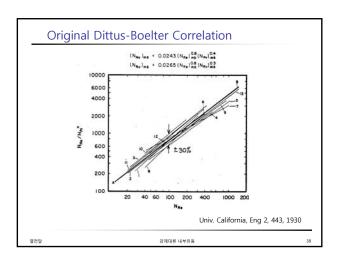


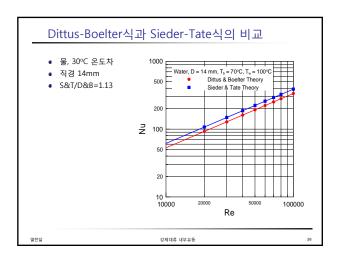


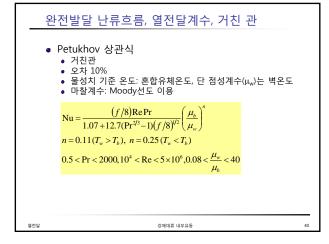


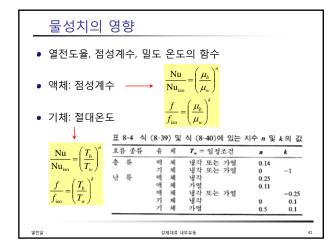


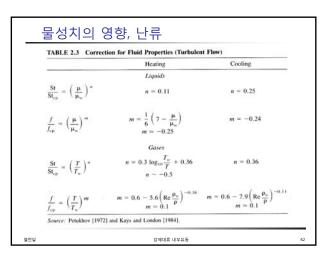


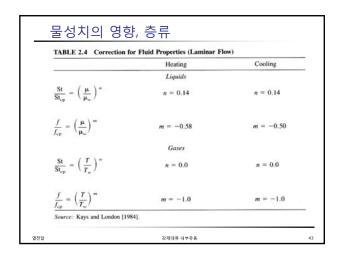


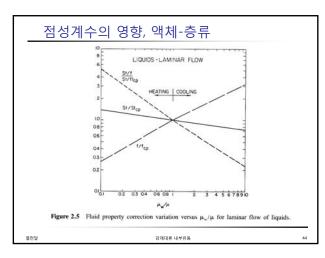












액체금속의 난류흐름

• 균일 열속, Lubarskey & Kaufman $Nu = 0.625 Pe^{0.4}$

 $Pe = Re Pr, 10^2 < Pe < 10^4, L/D > 60$

• 균일벽 온도, Azer & Chao

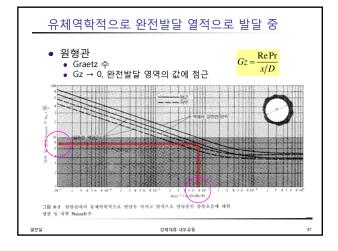
 $Nu = 5.0 + 0.05Pe^{0.77} Pr^{0.25}$ Pr < 0.1, Pe < 15000, L/D > 60

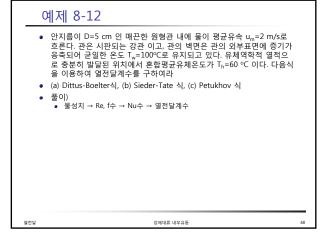
 $Nu_x = Nu + 1 + 1$

• 열적 입구영역

 $Nu_T = 6.3 + 0.0167 Pe^{0.85} Pr^{0.08}$

 $Nu_H = 4.8 + 0.0156 Pe^{0.85} Pr^{0.08}$


0.0042 < Pr < 0.1


강제대류 내부유동

예제 8-10 (pp253)

- 40°C 엔진오일 이 균일한 온도 100°C로 유지되고 있는 안지름 2.5 cm, 길이 40 m의 관 속으로 유량이 0.3 kg/s 로 흐른다. 흐름이 유체역학적 으로 발달되었다고 가정하고 (a) 평균열전달계수, (b) 오일의 출구온도 를 구하라.
- 풀이) 물성치 → Re, Gz수 → Nu수 → 열전달계수 → 출구온도

강제대류 내부유동

학습점검

- 관내 유동의 분류?
- 입구영역과 발달영역의 차이점?
- 열전달계수 계산?
- 압력강하의 계산?
- Moody 선도?

열전달

강제대류 내부유동