Enzymes are Subject to Inhibition (Enzyme Inhibition)

1. Pharmaceutical Importance of Enzyme Inhibition Study

Enzyme inhibitors are molecular agents that interfere with catalysis, slowing or halting enzymatic reaction...... the most important pharmaceutical agents known.

Example: Aspirin → prostaglandin inhibitor → Antiinflamation

Anticancer agents \rightarrow DNA, RNA, protein synthesis inhibitor (enzyme inhibitor)

- 2. Classification
 - 1) Reversible Inhibition: Competitive Inhibition

Uncompetitive Inhibition

Mixed Inhibition

2) Irreversible Inhibition

Enzyme Inhibition

Pharmaceutical Importance of Enzyme Inhibition Study

Enzyme inhibitors are molecular agents that interfere with catalysis, slowing or halting enzymatic reaction..... the most important pharmaceutical agents known.

Example : Aspirin → prostaglandin inhibitor → Anti-inflammation

Anticancer agents → DNA, RNA, protein synthesis inhibitor (enzyme inhibitor)

Classification

1) Reversible Inhibition: Competitive Inhibition

Uncompetitive Inhibition

Mixed Inhibition

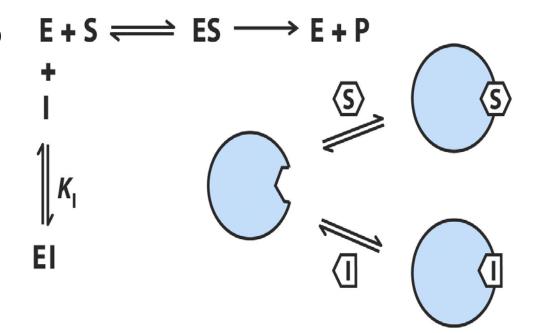
2) Irreversible Inhibition

To describe inhibition: K_i

- Definition: K_i (analogous to K_m) is the concentration of inhibitor at which it occupies half of the sites on the enzyme
- It is conceptually equivalent to the *dissociation constant* of the enzyme, or enzyme-substrate complex, and the inhibitor
- Measure K_m and V_{max} in presence of I, get "apparent" values...

A. Reversible Inhibition

(a) Competitive inhibition



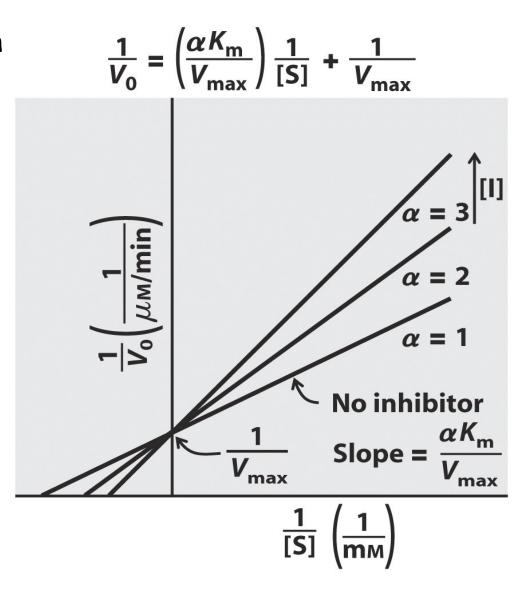
Same binding site

Competitive inhibition

- I binds to the same site as 5, but can be competed away by adding more substrate, so
 - V_{max} is not affected
 - Apparent K_m (αK_m) will increase with inhibitor concentration.

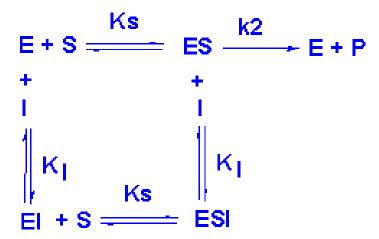
(a) Competitive inhibition

$$V_o = \frac{V_{\text{max}}[S]}{\alpha K_m + [S]}$$


$$\alpha = 1 + [I]/K_i$$

Competitive inhibition

- I binds to the same site as S, but can be competed away by adding more substrate, so
 - V_{max} is not affected
 - Apparent K_m (αK_m) will increase with inhibitor concentration.

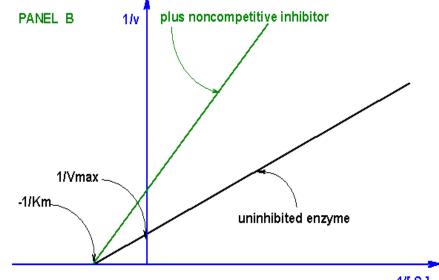

$$\alpha = 1 + [I]/K_i$$

$$V_o = \frac{V_{max}[S]}{\alpha K_m + [S]}$$

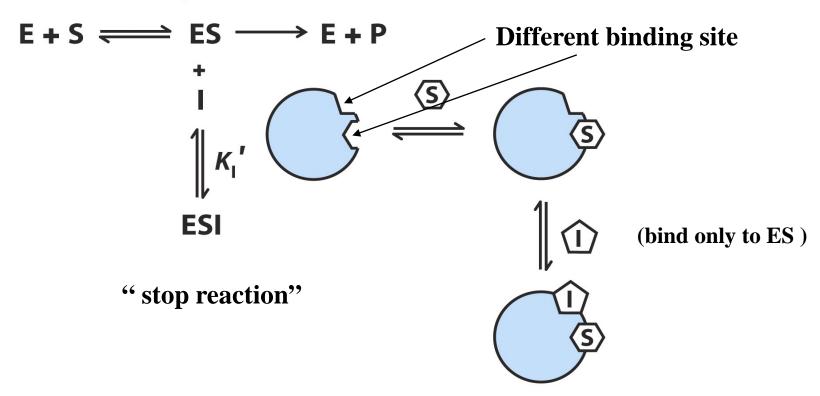
Noncompetitive inhibition

- Since noncompetitive inhibitors do not interfere in the binding of the substrate (the dissociation constant of ES and ESI have the same value Ks)
 - Km is not affected

- However, increasing [S] can not abolish the inhibition → (ESI)
 complex are formed and these are incapable of progressing to
 reaction products
- The effect of a noncompetitive inhibitor is to reduce [ES] that can advance to product
- Since Vmax = k₂[Et], and the concentration of competent Et is diminished by the amount of ESI formed
 - Vmax is decreased


Noncompetitive inhibition

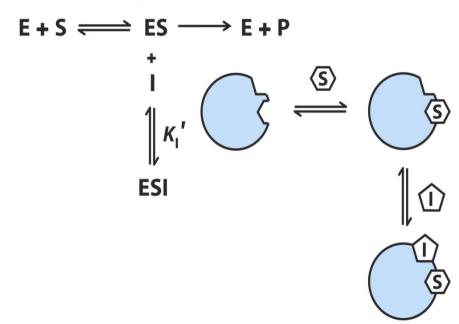
$$V = \frac{V_{\text{max}}[S]}{K_{\text{m}}\left(1 + \frac{[I]_{0}}{K_{i}}\right) + [S]\left(1 + \frac{[I]_{0}}{K_{i}}\right)} \quad \text{When } Ki \approx Ki'$$


$$v = \frac{V_{\text{max}}[S]}{\left([S] + K_{\text{m}}\right)\left(1 + \frac{[II]}{K_{i}}\right)}$$

$$v = \frac{V_{\text{max}}[S]}{\left([S] + K_{\text{m}}\right)\left(1 + \frac{[I]}{K_{\text{i}}}\right)}$$

$$\frac{1}{V} = \frac{K_{m}}{V_{max}} \frac{1}{[S]} \left(1 + \frac{[I]}{K_{i}} \right) + \frac{1}{V_{max}} \left(1 + \frac{[I]}{K_{i}} \right)$$

(b) Uncompetitive inhibition


Uncompetitive inhibition

Inhibitor binds only to ES complex - increased [S] cannot overcome it and since I removes some fraction of ES from participation,

- V_{max} is decreased, and
- K_m is proportionally decreased
- K_i is fixed

$$V_o = \frac{V_{max}[S]}{K_m + \alpha'[S]}$$

(b) Uncompetitive inhibition

$$\frac{1}{V_0} = \left(\frac{K_m}{V_{max}}\right) \frac{1}{[S]} + \frac{\alpha'}{V_{max}}$$

$$\alpha' = 2$$

$$\alpha' = 1.5$$

$$\alpha' = 1$$

$$-\frac{1}{K_m}$$

$$\frac{1}{[S]} \left(\frac{1}{m_M}\right)$$

$$\alpha' = 1 + [I]/K_i'$$

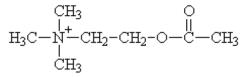
B. Irreversible Inhibition

Irreversible inhibitors are those that combine with or destroy a functional group on an enzyme that is essential for the enzyme's activity, or that form a particularly stable noncovalent association.

Permanent inactive form

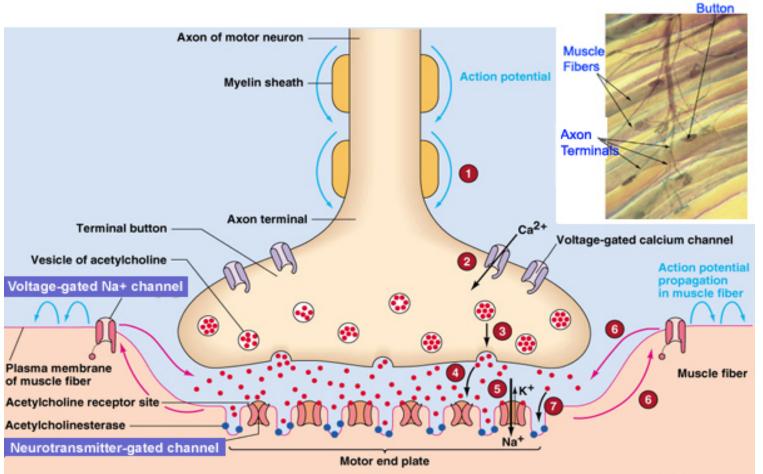
DIFP Diisopropylfluorophosphate

Irreversible Inhibitor(suicide inactivator)..... a modern approach to obtaining new pharmaceutical agents.


" New Drugs Design"

a suicide inhibitor

- Diisopropylfluorophosphate (DIFP) forms a covalent bond with an active -site residue (Ser) of the enzyme chymotrypsin.
- Every molecule that reacts is inactivated irreversibly.
- Here, a key active site Ser is bound irreversibly to the inhibitor, preventing it from doing its "normal" job.


Irreversible Inhibition at the NM Junction

The Neuromuscular Junction

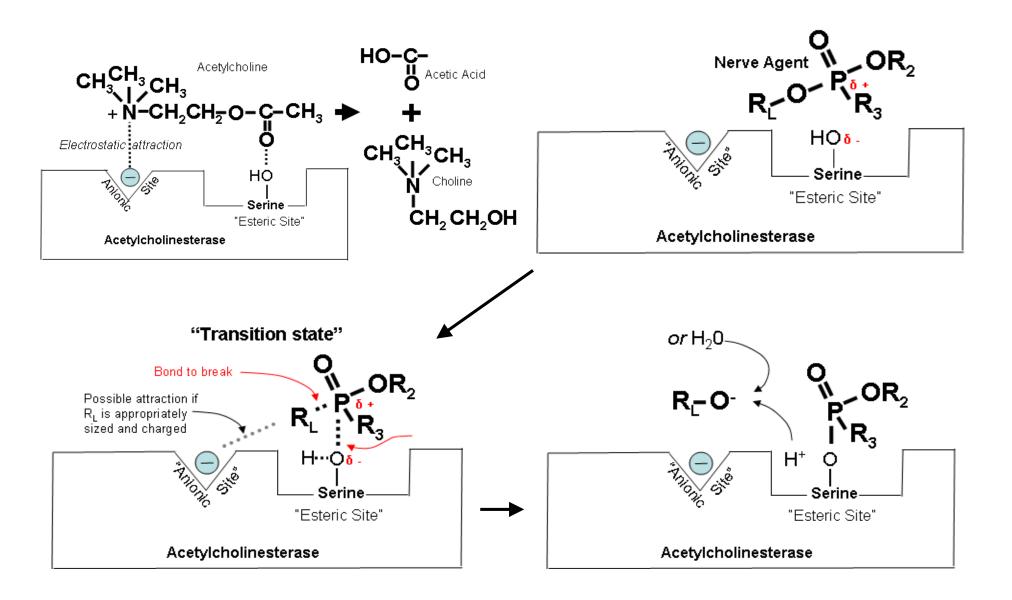
Acetylcholine

Terminal

Nerve Gases

Sarin

Tabun


$$H_3C$$
 CH_3 H_3C P CH_4 CH_5 CH_5 CH_3 CH_3 CH_3

Soman

VX

Symptoms: Contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation and eventual death by asphyxiation as control is lost over respiratory muscles.

Action of nerve agents

Nerve gases - properties

Property	Tabun (GA)	Sarin (GB)	Soman (GD)	VX
Appearance	Colourless to brown liquid giving off colourless vapour	Colourless liquid giving off a colorless vapour	Colourless liquid giving off a colourless vapour	Amber coloured liquid
Chemical formula	HH-CH3 N CN	CH ₃ H-C-O CH ₃ CH ₃ F	CH ₃ H CH ₃ -C-C-C-O CH ₃ CH ₃ F	C ₂ H ₂ O O CH(CH ₃) ₂ CH ₃ SCH ₂ CH ₃ N CH(CH ₃) ₂

Agent	LD50	LCt50
Tabun (GA)	1000 mg	400 mg/min-m ³
Sarin (GB)	1700 mg	100 mg/min-m ³
Soman (GD)	50 mg	70 mg/min-m ³
VX	10 mg	50 mg/min-m ³