Chapter 3 outline

- 3.1 Transport-layer services
- 3.2 Multiplexing and demultiplexing
- 3.3 Connectionless transport: UDP
- □ 3.4 Principles of reliable data transfer

- 3.5 Connection-oriented transport: TCP
 - segment structure
 - o reliable data transfer
 - o flow control
 - connection management
- 3.6 Principles of congestion control
- 3.7 TCP congestion control

TCP: Overview

RFCs: 793, 1122, 1323, 2018, 2581

- **point-to-point:**
 - one sender, one receiver
- reliable, in-order *byte* stream:
 - o no "message boundaries"
- pipelined:
 - TCP congestion and flow control set window size
- □ send & receive buffers

- ☐ full duplex data:
 - o bi-directional data flow in same connection
 - MSS: maximum segment size
- connection-oriented:
 - handshaking (exchange of control msgs) init's sender, receiver state before data exchange
- ☐ flow controlled:
 - o sender will not overwhelm receiver

TCP segment structure

TCP seq. #'s and ACKs

Seq. #'s:

byte stream "number" of first byte in segment's data

ACKs:

- seq # of next byte expected from other side
- o cumulative ACK
- Q: how receiver handles outof-order segments
 - A: TCP spec doesn't say, up to implementor

Timeout -- function of RTT

- Q: how to set TCP timeout value?
- □ longer than RTT
 - but RTT varies
- too short: premature timeout
 - unnecessary retransmissions
- too long: slow reaction to segment loss

- Q: how to estimate RTT?
- SampleRTT: measured time from segment transmission until ACK receipt

- SampleRTT will vary, want estimated RTT "smoother"
 - average several recent measurements, not just current SampleRTT

TCP Round Trip Time and Timeout

```
EstimatedRTT = (1-\alpha)*EstimatedRTT + \alpha*SampleRTT
```

- Exponential weighted moving average
- influence of past sample decreases exponentially fast
 - typical value: $\alpha = 0.125$

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

TCP Round Trip Time and Timeout

Setting the timeout

- EstimtedRTT plus "safety margin"
 - large variation in EstimatedRTT -> larger safety margin
- first estimate of how much SampleRTT deviates from EstimatedRTT:

DevRTT =
$$(1-\beta)*DevRTT + \beta*|SampleRTT-EstimatedRTT|$$

(typically, $\beta = 0.25$)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Chapter 3 outline

- 3.1 Transport-layer services
- 3.2 Multiplexing and demultiplexing
- 3.3 Connectionless transport: UDP
- □ 3.4 Principles of reliable data transfer

- 3.5 Connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - o flow control
 - connection management
- □ 3.6 Principles of congestion control
- □ 3.7 TCP congestion control

TCP reliable data transfer

- ☐ TCP creates rdt service on ☐ Retransmissions are top of IP's unreliable service
- Pipelined segments
- ☐ Cumulative acks
- ☐ TCP uses single retransmission timer

- triggered by:
 - o timeout events
 - duplicate acks
- ☐ Initially consider simplified TCP sender:
 - o ignore duplicate acks
 - o ignore flow control, congestion control

TCP sender events:

data revd from app:

- ☐ Create segment with seq #
- □ seq # is byte-stream number of first data byte in segment
- start timer if not already running (think of timer as for oldest unacked segment)
- expiration interval:
 TimeOutInterval

timeout:

- retransmit segment that caused timeout
- restart timer

Ack rcvd:

- ☐ If acknowledges previously unacked segments
 - update what is known to be acked
 - start timer if there are outstanding segments

```
NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum
loop (forever) {
  switch(event)
  event: data received from application above
     create TCP segment with sequence number NextSeqNum
     if (timer currently not running)
         start timer
     pass segment to IP
     NextSeqNum = NextSeqNum + length(data)
  event: timer timeout
     retransmit not-yet-acknowledged segment with
          smallest sequence number
     start timer
  event: ACK received, with ACK field value of y
     if (y > SendBase) {
         SendBase = y
        if (there are currently not-yet-acknowledged segments)
              start timer
 } /* end of loop forever */
```

TCP sender (simplified)

Comment:

SendBase-1: last cumulatively ack'ed byte Example:
SendBase-1 = 71; y= 73, so the rcvr wants 73+; y > SendBase, so that new data is acked

TCP: retransmission scenarios

TCP retransmission scenarios (more)

Cumulative ACK scenario