Chapter 3 outline

3 3.1 Transport-layer
SErvices

[3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

@ 3.4 Principles of reliable
data transfer

3 3.5 Connection-oriented
transport: TCP

O segment structure
O reliable data transfer
O flow control
O connection management
3 3.6 Principles of congestion
control

3 3.7 TCP congestion control

Transport Layer 3-51

socket

door —

TCPI Overview RFCs: 793, 1122, 1323, 2018, 2581

3 point-to-point:
O one sender, one receiver
3 reliable, in-order byte
stream.
O no “message boundaries”
3 pipelined:

O TCP congestion and flow
control set window size

3 send & receive buffers

TCP
send buffer

TCP
receive buffer

() segment] —p ()

3 full duplex data:

O bi-directional data flow 1n
same connection

O MSS: maximum segment
SVAS
3 connection-oriented:
O handshaking (exchange of
control msgs) init’s sender,

receiver state before data
exchange

3 flow controlled:

et O sender will not overwhelm

" door

receiver

Transport Layer 3-52

TCP segment structure

32 bits

B
>

URG: urgent data

source port # | dest port #

counting

(generally not used)™_
ACK: ACK #

/

by bytes
of data

sequence number

valid

(not segments!)

PSH: push data now
(generally not used)—"|

RST, SYN, FIN|
connection estab

cknowledgement number
WS F| Receive window # bytes
C sum Urg data pnter "
7 Y, g P rcvr willing
to accept

Optiens (variable length)

(setup, teardown
commands)

InTerni;////
checksu

(as in UDP)

/

application
data
(variable length)

Transport Layer 3-33

TCP seq. #’s and ACKs

Seq. #’s:
O byte stream “number”
of first byte in
segment’s data

ACKs:

O seq # of next byte
expected from other
side

O cumulative ACK

Q: how receiver handles out-
of-order segments

O A: TCP spec doesn’t
say, - up to
implementor

host ACKs
receipt

of echoed
IC!

Se

f K=
79, data =0
host ACKs

receipt of
'C', echoes
back ‘'C’

simple telnet scenario

Transport Layer

time

v

3-54

Timeout -- function of RTT

Q: how to set TCP
timeout value?

7 longer than RTT
O but RTT varies

3 too short: premature
timeout

O unnecessary
retransmissions

3 too long: slow reaction to
segment loss

Q: how to estimate RTT?

7 SampleRTT: measured time from
segment transmission until ACK
receipt

7 SampleRTT will vary, want

estimated RTT “smoother”

O average several recent
measurements, not just current
SampleRTT

TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

B Exponential weighted moving average
B influence of past sample decreases exponentially fast
H typical value: a = 0.125

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom fr

350 -

300

[ne]
s
o

RTT (milliseconds)

[ae]
o
(=]

150

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
time {seconnds)

106

| ——SampleRTT —=— Estimated RTT |

TCP Round Trip Time and Timeout

Setting the timeout

7 EstimtedRTT plus “safety margin”
O large variation in EstimatedRTT -> larger safety margin

A first estimate of how much SampleRTT dewviates from EstimatedRTT:

DevRTT = (1-f) *DevRTT +
B* | SampleRTT-EstimatedRTT|

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Chapter 3 outline

3 3.1 Transport-layer
SErvices

[3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

@ 3.4 Principles of reliable
data transfer

3 3.5 Connection-oriented
transport:. TCP

O segment structure
O reliable data transfer
O flow control
O connection management
3 3.6 Principles of congestion
control

3 3.7 TCP congestion control

Transport Layer 3-59

TCP reliable data transfer

3 TCP creates rdt service on [Retransmissions are

top of IP’s unreliable triggered by:
SCrvice O timeout events

3 Pipelined segments O duplicate acks

3 Cumulative acks

7 TCP uses single O Initially consider
retransmission timer simplified TCP sender:

O 1ignore duplicate acks

O 1gnore flow control,
congestion control

Transport Layer 3-60

TCP sender events:

data rcvd from app: timeout:

7 Create segment with seq# O retransmit segment that
caused timeout

I restart timer
Ack revd:

3 If acknowledges
previously unacked

3 seq # 1s byte-stream
number of first data byte
in segment

3 start timer 1f not already
running (think of timer as

segments
for oldest unacked O update what is known to be
segment) acked

3 expiration interval: O start timer if there are
: outstanding segments
TimeOutInterval & 58

Transport Layer 3-61

NextSegNum = InitialSegqNum
SendBase = InitialSeqgNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} /" end of loop forever */

TCP

sender

(simplified)

Comment:

+ SendBase-1: last
cumulatively
ack'ed byte
Example:

- SendBase-1= 71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

Transport Layer 3-62

TCP: retransmission scenarios

Se =g
2,

3 =200 =

= X 5

l loss by

Seq-.: #—

92, 8 bytes dats Se_niltoa(a)se 1

- =3

SendBase é

N =120 £

/ ?Nl\

[w gl

Q

SendBase v

- 100 SendBase 1
v il =120 v premature timeout

time

time :
lost ACK scenario Transport Layer ~ 3-63

TCP retransmission scenarios (more)

18D 1iost Host B | JHb

Seq~
-..92
W
loss
SendBase ACK‘“QO

=120

timeout ——
\!
o)
[

time
Cumulative ACK scenario

Transport Layer 3-64

	슬라이드 번호 1
	슬라이드 번호 2
	슬라이드 번호 3
	슬라이드 번호 4
	슬라이드 번호 5
	슬라이드 번호 6
	슬라이드 번호 7
	슬라이드 번호 8
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14

