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socket

door —

TCPI Overview RFCs: 793, 1122, 1323, 2018, 2581

3 point-to-point:
O one sender, one receiver
3 reliable, in-order byte
stream.
O no “message boundaries”
3 pipelined:

O TCP congestion and flow
control set window size

3 send & receive buffers

TCP
send buffer

TCP
receive buffer

() segment] —p ()

3 full duplex data:

O bi-directional data flow 1n
same connection

O MSS: maximum segment
SVAS
3 connection-oriented:
O handshaking (exchange of
control msgs) init’s sender,

receiver state before data
exchange

3 flow controlled:

et O sender will not overwhelm

" door

receiver
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TCP segment structure
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TCP seq. #’s and ACKs

Seq. #’s:
O byte stream “number”
of first byte in
segment’s data

ACKs:

O seq # of next byte
expected from other
side

O cumulative ACK

Q: how receiver handles out-
of-order segments

O A: TCP spec doesn’t
say, - up to
implementor

host ACKs
receipt

of echoed
IC!

Se

f K=
79, data =0
host ACKs

receipt of
'C', echoes
back ‘'C’

simple telnet scenario
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Timeout -- function of RTT

Q: how to set TCP
timeout value?

7 longer than RTT
O but RTT varies

3 too short: premature
timeout

O unnecessary
retransmissions

3 too long: slow reaction to
segment loss

Q: how to estimate RTT?

7 SampleRTT: measured time from
segment transmission until ACK
receipt

7 SampleRTT will vary, want

estimated RTT “smoother”

O average several recent
measurements, not just current
SampleRTT



TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

B Exponential weighted moving average
B influence of past sample decreases exponentially fast
H typical value: a = 0.125



Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom fr
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TCP Round Trip Time and Timeout

Setting the timeout

7 EstimtedRTT plus “safety margin”
O large variation in EstimatedRTT -> larger safety margin

A first estimate of how much SampleRTT dewviates from EstimatedRTT:

DevRTT = (1-f) *DevRTT +
B* | SampleRTT-EstimatedRTT|

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT
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TCP reliable data transfer

3 TCP creates rdt service on [ Retransmissions are

top of IP’s unreliable triggered by:
SCrvice O timeout events

3 Pipelined segments O duplicate acks

3 Cumulative acks

7 TCP uses single O Initially consider
retransmission timer simplified TCP sender:

O 1ignore duplicate acks

O 1gnore flow control,
congestion control
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TCP sender events:

data rcvd from app: timeout:

7 Create segment with seq# O retransmit segment that
caused timeout

I restart timer
Ack revd:

3 If acknowledges
previously unacked

3 seq # 1s byte-stream
number of first data byte
in segment

3 start timer 1f not already
running (think of timer as

segments
for oldest unacked O update what is known to be
segment) acked

3 expiration interval: O start timer if there are
: outstanding segments
TimeOutInterval & 58
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NextSegNum = InitialSegqNum
SendBase = InitialSeqgNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} /" end of loop forever */

TCP

sender

(simplified)

Comment:

+ SendBase-1: last
cumulatively
ack'ed byte
Example:

- SendBase-1= 71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked
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TCP: retransmission scenarios
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TCP retransmission scenarios (more)
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