Chapter 3 outline

3 3.1 Transport-layer
SErvices

[3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of reliable
data transfer

3 3.5 Connection-oriented
transport:. TCP

O segment structure
O reliable data transfer
O flow control
O connection management
3 3.6 Principles of congestion
control

3 3.7 TCP congestion control

Transport Layer 3-19

Principles of Reliable Data Transfer

7 Fundamentally important networking topic!
7 Why do we need reliable data transfer protocol?

Transport Layer

Procers
Process Application Layer

RDT p

rotocol

(sending side)

Receiving
Process

RDT protocol

(!nre|ia!le !!unnel

(receiving side)

7 What can happen over unreliable channel?
> Message error

> Message loss

20

Let's Build simple Reliable Data
Transfer Protocol

we'll:
7 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

3 consider only stop-and-wait protocol

7 use finite state machines (FSM) to specify
sender, receiver

event causing state transition
actions taken on state transition

e ‘--...-"
event
actions)

21

state: when in this
"state” next state
uniquely determined
by next event

Rdt1.0: Data Transfer over a Perfect Channel

7 underlying channel is perfectly reliable
O no packet errors
O no packet loss

3 What mechanisms do we need for reliable transfer?
o Nothing! Underlying channel is reliablel

rdt_send(data) rdt_rcv(packet)

call from extract (packet,data)
deliver_data(data)

call from
above packet = make_pkt(data) below

udt_send(packet)

sender receiver

22

Rdt2.0: channel with packet errors (no loss!)

7 What mechanisms do we need to deal with error?

O Error detection
Add checksum bits

O Feedback

Acknowledgements (ACKs): receiver explicitly tells sender
that packet received correctly

Negative acknowledgements (NAKs): receiver explicitly tells
sender that packet had errors

O Retransmission
sender retransmits packet on receipt of NAK

7 So, we need the following mechanisms:

O Error detection, Feedback (ACK/NACK), Retransmission
23

rdt2.0: FSM specification

sender

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
IsNAK(rcvpkt)

call from

udt_send(sndpkt)
above

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt _send(NAK)
<.

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

24

rdt2.0: Can this completely solve errors?

sender
What happens when ACK or

dt_send(data) NAK has errors?

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt) Approach: resend the current

rdt_rcv(rcvpkt) && data packet?
IsSNAK(rcvpkt)

call from

udt_send(sndpkt) T
above

Duplicate
— packets

rdt_rcv(rcvpkt) && isACK(rcvpkt) T
A

Y

The received packet is new or duplicate? <

Handling Duplicate Packets

7 Sender adds seguence number to each packet

7 Sender retransmits current packet if ACK/
NAK garbled

7 Receiver discards duplicate packet

26

rtd2.1: examples

sender

ACK

Receiver expects
a pkt with seq. # 1

Duplicate pkt; discard it

receiver

27

rdt2.1: summary for packet error

A Mechanisms for channel with packet errors
O Error detection, Feedback, Retransmission, Sequence#

Sender: Receiver:

7 seq # added to pkt 3 must check if received
packet is duplicate

7 must check if received

ACK/NAK corrupted 7 send NAK if received
packet is corrupted

: d ACK ot '
9 Retransmit on NAK or O Sen K otherwise

corrupted feedback

30

rdt2.2: a NAK-free protocol

7 Same functionality as rdt2.1, using ACKs only

7 Instead of NAK, receiver sends ACK for last
correctly received packet

O Receiver must explicitly include seq # of pkt being ACKed

7 Duplicate ACK at sender results in same action as
NAK: retransmit current pkt

31

rdt3.0: channel with loss & packet errors

7 What mechanisms do we need for packet loss?
o Timer!

7 Sender waits "reasonable” amount of time for
ACK (a Time-Out)

I If packet (or ACK) is just delayed (not lost):

O Retransmission will be duplicate, but use of
seq. #'s already handles this

33

rdt3.0 in action

sender receiver
send pk’rO |d rcv pkio
send ACKO
rcv ACKO /
send pkfl \
rcv pkil
send ACK]
rcvACK]
send pki0 kt O
rcv pkio
send ACKO

(q) operation with no loss

sender receiver
okt
send k0. ==—=_0__ 1ov pki0
ACK send ACKO
send pkt1 \%ﬂ(
(loss)
timeout _|
resend pkt1 %
rcv Pkt
ACK send ACK
rcvACK ot
send pki0

rcv pki0
}9/ send ACKO

(b) lost packet

34

rdt3.0 in action

sender receiver
pkt
send pkiO 0 eV pKiO
ACK send ACKO
rcv ACKO
send pkil] |<T]
K rcv pktl
ACK send ACKT
(loss))(/
timeout = kT
esond kT \’TCV Pkt ‘
ACK (detect duplicate)
send ACK
rCcVACK o
send pki0 0
rcv pk
ACK send ACKO
(c) lost ACK

sender receiver
kt
send pki0 \k* oV ki
ACK send ACKO

rcv ACKO _
send pkil
rcv pkil
send ACKI
fimeout
resend pkil =

rcv pkil

rcvACKT (detect duplicate)
send pkiO send ACK

rcv pkio

send ACKO

(d) premature timeout

35

Recap: Principles of Reliable Data Transfer

3 What can happen over unreliable channel?

O Packet error, packet loss

7 What mechanisms for packet error?

O Error detection, feedback, retransmission, sequence#

7 What mechanisms for packet loss?

o Timeout!

7 We built simple reliable data transfer protocol

o Real-world protocol (e.g., TCP) is more complex, but with
same principles!

36

Pertormance of rdt3.0

0 rdt3.0 works, but performance stinks
O example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

_ L (packet length in bits) _ 8kb/pkt

fransmit ™ R (transmission rate, bps) ~ 10**9 b/sec 8 microsec
O U e utilization — fraction of time sender busy sending
.008
U L/R — 0.00027

sender RTT+L/R - 30.008
O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link

O network protocol limits use of physical resources!

Transport Layer 3-38

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
O range of sequence numbers must be increased
O buffering at sender and/or receiver

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

3 Two generic forms of pipelined protocols: go-Back-N, selective
repeat

Transport Laver 3-40

	슬라이드 번호 1
	슬라이드 번호 2
	슬라이드 번호 3
	슬라이드 번호 4
	슬라이드 번호 5
	슬라이드 번호 6
	슬라이드 번호 7
	슬라이드 번호 8
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17

