
Lecture 27Lecture 27
Polling and Interrupt

Byung-gi Kim
School of ComputingSchool of Computing
Soongsil University

6. Storage and Other I/O Topics

6.1 Introduction
6.2 Dependability, Reliability, and Availability
6.3 Disk Storage
6.4 Flash Storage
6.5 Connecting Processors, Memory, and I/O Devices
6 6 I f i I/O D i h P M6.6 Interfacing I/O Devices to the Processor, Memory,

and Operating System
6 7 I/O Performance Measures: Examples from Disk and6.7 I/O Performance Measures: Examples from Disk and

File Systems
6 8 Designing an I/O System6.8 Designing an I/O System
6.9 Parallelism and I/O: RAID
6 10 Real Stuff: Sun Fire x4150 Server6.10 Real Stuff: Sun Fire x4150 Server

Computer Architecture 27-1

Giving Commands to I/O Devices

 Status register
 Done bit and Error bit

 Data register
 Data to be printed

 Operations of processor
 Must wait until the done bit set by the printer

Must check the error bit Must check the error bit

Computer Architecture 27-2

Communicating with the Processor

 Polling
 aka () I/O or program-controlled transfer
 The process of periodically checking status bits to see if it is time for the

next I/O operationnext I/O operation
 I/O device simply puts the information in a () register.
 The simplest way for an I/O device to communicate with the processor
 The processor is totally in control and does all the work.
 Waste a lot of processor time

Because the processors are much faster than I/O devices Because the processors are much faster than I/O devices
 Read the Status register many times, only to find that the device has not yet

completed I/O operation.
 idle loop, busy waiting, spinlock

Computer Architecture 27-3

Example Programmed Input

13 1

2

3

4
5

CPU must check the value of the flag
- wasting time

Computer Architecture 27-4

Programmed Input Programmed Output

Execute
other job

NO

Execute

CPU Register <- Data Register

YES other job

Computer Architecture 27-5

Interrupt-Driven I/O

 I/O interrupts
 Alleviate overhead in polling interface
 Using interrupts to notify the processor when an I/O device requires

attention from the processorattention from the processor
 Do not waste processor time

 Differences of I/O interrupts from exceptions Differences of I/O interrupts from exceptions
1) () with respect to the instruction execution

 Is not associated with any () o a o a d a y ()

2) Need more information
 Such as () and ()
 Different priorities of the devices

Computer Architecture 27-6

Communicating Information to Processor

 Such as identity of the interrupting device

(cf) Lecture 19 Exceptions(cf) Lecture 19 Exceptions

1 V t d i t t1. Vectored interrupt
 Send vector address

2. Non-vectored interrupt
 Send status field to place in the Cause register

Computer Architecture 27-7

Interrupt Priority Levels

 Interrupt priorityInterrupt priority
 Indicate the order in which the processor should process interrupts
 4 to 6 levels in UNIX
 Typically I/O interrupts have lower priority than internal exceptions.
 MIPS has 6 hardware and 2 software interrupt levels.

 Status register
 Determines who can interrupt the computer

Interrupt enable & interrupt mask Interrupt enable & interrupt mask
 User mode: 1 when in user mode, 0 when in kernel mode
 Exception level: 1 after an exception occurs Exception level: 1 after an exception occurs

Computer Architecture 27-8

Key Registers

 Status register

 Cause register

Figure 6.11

Computer Architecture 27-9

Daisy-chain Priority Interrupt

vector address

priority in

priority out

Computer Architecture 27-10

Parallel Priority Interrupt

Computer Architecture 27-11

Interrupt Handling in MIPS

 Exception handler
 8000 0180hex in the kernel space
 Examines the exception’s cause and jumps to an appropriate point in the

operating systemoperating system

 Cause of exception

Computer Architecture 27-12

Interrupt Handling

1. Logically AND the () field and the
() fi ld() field.

2. Select the highest priority interrupt.
S h i ()3. Save the interrupt () .

4. Change the interrupt mask.
Di bl ll i t t f l l i it Disable all interrupts of equal or lower priority.

5. Save the () .
6 () th i t t bl bit6. () the interrupt enable bit.

 Allow higher-priority interrupts.

7 Call the appropriate interrupt routine7. Call the appropriate interrupt routine.
8. () the interrupt enable bit and restore () .

Computer Architecture 27-13

Transferring the Data between a Device
and Memory

1. Polling-based transfer (= programmed I/O)
 Periodical check of device status by CPU Periodical check of device status by CPU

while (not ready) get_status_of_the_device;

load data from I/O device;load_data_from_I/O_device;

store_the_data_into_memory;

 Best with lower-bandwidth devices
 More interested in reducing the cost of the device controller and interface

than in providing a high-bandwidth transfer
P t b d f i d t d i th t f th Put burden of moving data and managing the transfer on the processor

Computer Architecture 27-14

2. Interrupt Driven Transfer

 Common characteristics with programmed I/O
 () still transfers data in small number of bytes.
 Best with lower-bandwidth devices
 More interested in reducing the cost More interested in reducing the cost

 Difference
 () informs the processor when ready () informs the processor when ready
 Relieving the processor from having to wait for every I/O

 I/O operation/ p
 OS simply works on other tasks while data is being read from or written

to the device.
O i t t OS d th t t t h k f On interrupts, OS reads the status to check for errors.

 If none, OS transfers data.
 When I/O completed OS can inform the program When I/O completed, OS can inform the program.

Computer Architecture 27-15

