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6. Storage and Other 170 Topics

6.1 Introduction

6.2 Dependability, Reliability, and Availability

6.3 Disk Storage

6.4 Flash Storage

6.5 Connecting Processors, Memory, and 1/0 Devices

6.6 Interfacing 1/0 Devices to the Processor, Memory,
and Operating System

6.7 1/0 Performance Measures: Exam
File Systems

6.8 Designing an I/0 System

6.9 Parallelism and 1/0: RAID

6.10 Real Stuff: Sun Fire x4150 Server
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Giving Commands to 1/0 Devices
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= Status register
+» Done bit and Error bit

= Data register
+» Data to be printed

= Operations of processor
+ Must wait until the done bit set by the printer
= Must check the error bit

Computer Architecture 27-2



Communicating with the Processor

= Polling
+ aka ( ) 1/0 or program-controlled transfer

+ The process of periodically checking status bits to see if it is time for the
next 1/0 operation

= 1/0 device simply puts the information in a ( ) register.
= The simplest way for an 1/0 device to communicate with the processor
= The processor is totally in control and does all the work.

+» Waste a lot of processor time
+ Because the processors are much faster than 1/0 devices

+ Read the Status register many times, only to find that the device has not yet
completed 1/0 operation.

+ Iidle loop, busy waiting, spinlock
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Example Programmed Input

L Databus Interface /O bus 1
Address bus > S
. I/O
CcPU /O read . Data register ) Ready 2 device
/O write Status 5 Acknowledge
register 4 4 d
/
Flag

v

CPU must check the value of the flag
- wasting time
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Programmed Input Programmed Output

: |

Execute Read Status Register CPU Register <- Memory

other job ,
.l

Read Status Register

NO

Ready ?
Execute

YES other job

CPU Register <- Data Register NO

¢ YES

Memory <- CPU Register Data Register <- CPU Register

i l
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Interrupt-Driven 1/0

= /0 interrupts
Alleviate overhead in polling interface

Using interrupts to notify the processor when an 1/0 device requires
attention from the processor

Do not waste processor time

= Differences of I/0 interrupts from exceptions

1) ( ) with respect to the instruction execution
+ Is not associated with any ( )

2) Need more information
+ Such as ( ) and ( )

+ Different priorities of the devices
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Communicating Information to Processor

= Such as identity of the interrupting device
(cf) Lecture 19 Exceptions

1. Vectored interrupt

+ Send vector address

2. Non-vectored interrupt

+» Send status field to place in the Cause register
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Interrupt Priority Levels

* Interrupt priority
+ Indicate the order in which the processor should process interrupts
+« 4 1o 6 levels in UNIX
« Typically 1/0 interrupts have lower priority than internal exceptions.
+ MIPS has 6 hardware and 2 software interrupt levels.
= Status register
+ Determines who can interrupt the computer
» Interrupt enable & interrupt mask
+« User mode: 1 when in user mode, O when in kernel mode
» Exception level: 1 after an exception occurs
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Key Registers

= Status register
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Figure 6.11

Computer Architecture 27-9



Daisy-chain Priority Interrupt

vector address
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Parallel Priority Interrupt
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Interrupt Handling in MIPS

= Exception handler
+ 8000 0180, In the kernel space

+» Examines the exception’s cause and jumps to an appropriate point in the
operating system

= Cause of exception
Mumbor [Namo |Cmusoofexcoption

] Int interrupt (hardware)
4 AdEL address error exception (load or instruction fetch)
5 AdES address error exception (store)
5] IEE bus error on instruction fetch
Fi DBE bus error on data load or store
8 Sys syscall exception
2] Ep breakpoint exception
10 Rl reserved instruction exception
11 CpU coprocessor unimplemented
12 Ov arithmetic overflow exception
13 Tr trap
15 FPE floating point
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Interrupt Handling

1. Logically AND the ( ) field and the
( ) field.

2. Select the highest priority interrupt.
Save the interrupt ( ) .

4. Change the interrupt mask.
Disable all interrupts of equal or lower priority.

Save the ( ) .
( ) the interrupt enable bit.
Allow higher-priority interrupts.
Call the appropriate interrupt routine.
( ) the interrupt enable bit and restore (
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Transferring the Data between a Device
and Memory

1. Polling-based transfer (= programmed 1/0)
+ Periodical check of device status by CPU
while (not ready) get status of the device;
load data from 1/0 device;
store_the data i1nto _memory;

+ Best with lower-bandwidth devices

+~ More interested in reducing the cost of the device controller and interface
than in providing a high-bandwidth transfer

+ Put burden of moving data and managing the transfer on the processor
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2. Interrupt Driven Transfer

= Common characteristics with programmed 1/0
R ) still transfers data in small number of bytes.
+ Best with lower-bandwidth devices
+ More interested in reducing the cost

= Difference
R ) informs the processor when ready
+ Relieving the processor from having to wait for every 1/0

= |/0 operation

« OS simply works on other tasks while data is being read from or written
to the device.

« On interrupts, OS reads the status to check for errors.
+ If none, OS transfers data.
+ When 1/0 completed, OS can inform the program.
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