
Lecture 27Lecture 27
Polling and Interrupt

Byung-gi Kim
School of ComputingSchool of Computing
Soongsil University

6. Storage and Other I/O Topics

6.1 Introduction
6.2 Dependability, Reliability, and Availability
6.3 Disk Storage
6.4 Flash Storage
6.5 Connecting Processors, Memory, and I/O Devices
6 6 I f i I/O D i h P M6.6 Interfacing I/O Devices to the Processor, Memory,

and Operating System
6 7 I/O Performance Measures: Examples from Disk and6.7 I/O Performance Measures: Examples from Disk and

File Systems
6 8 Designing an I/O System6.8 Designing an I/O System
6.9 Parallelism and I/O: RAID
6 10 Real Stuff: Sun Fire x4150 Server6.10 Real Stuff: Sun Fire x4150 Server

Computer Architecture 27-1

Giving Commands to I/O Devices

 Status register
 Done bit and Error bit

 Data register
 Data to be printed

 Operations of processor
 Must wait until the done bit set by the printer

Must check the error bit Must check the error bit

Computer Architecture 27-2

Communicating with the Processor

 Polling
 aka () I/O or program-controlled transfer
 The process of periodically checking status bits to see if it is time for the

next I/O operationnext I/O operation
 I/O device simply puts the information in a () register.
 The simplest way for an I/O device to communicate with the processor
 The processor is totally in control and does all the work.
 Waste a lot of processor time

Because the processors are much faster than I/O devices Because the processors are much faster than I/O devices
 Read the Status register many times, only to find that the device has not yet

completed I/O operation.
 idle loop, busy waiting, spinlock

Computer Architecture 27-3

Example Programmed Input

13 1

2

3

4
5

CPU must check the value of the flag
- wasting time

Computer Architecture 27-4

Programmed Input Programmed Output

Execute
other job

NO

Execute

CPU Register <- Data Register

YES other job

Computer Architecture 27-5

Interrupt-Driven I/O

 I/O interrupts
 Alleviate overhead in polling interface
 Using interrupts to notify the processor when an I/O device requires

attention from the processorattention from the processor
 Do not waste processor time

 Differences of I/O interrupts from exceptions Differences of I/O interrupts from exceptions
1) () with respect to the instruction execution

 Is not associated with any () o a o a d a y ()

2) Need more information
 Such as () and ()
 Different priorities of the devices

Computer Architecture 27-6

Communicating Information to Processor

 Such as identity of the interrupting device

(cf) Lecture 19 Exceptions(cf) Lecture 19 Exceptions

1 V t d i t t1. Vectored interrupt
 Send vector address

2. Non-vectored interrupt
 Send status field to place in the Cause register

Computer Architecture 27-7

Interrupt Priority Levels

 Interrupt priorityInterrupt priority
 Indicate the order in which the processor should process interrupts
 4 to 6 levels in UNIX
 Typically I/O interrupts have lower priority than internal exceptions.
 MIPS has 6 hardware and 2 software interrupt levels.

 Status register
 Determines who can interrupt the computer

Interrupt enable & interrupt mask Interrupt enable & interrupt mask
 User mode: 1 when in user mode, 0 when in kernel mode
 Exception level: 1 after an exception occurs Exception level: 1 after an exception occurs

Computer Architecture 27-8

Key Registers

 Status register

 Cause register

Figure 6.11

Computer Architecture 27-9

Daisy-chain Priority Interrupt

vector address

priority in

priority out

Computer Architecture 27-10

Parallel Priority Interrupt

Computer Architecture 27-11

Interrupt Handling in MIPS

 Exception handler
 8000 0180hex in the kernel space
 Examines the exception’s cause and jumps to an appropriate point in the

operating systemoperating system

 Cause of exception

Computer Architecture 27-12

Interrupt Handling

1. Logically AND the () field and the
() fi ld() field.

2. Select the highest priority interrupt.
S h i ()3. Save the interrupt () .

4. Change the interrupt mask.
Di bl ll i t t f l l i it Disable all interrupts of equal or lower priority.

5. Save the () .
6 () th i t t bl bit6. () the interrupt enable bit.

 Allow higher-priority interrupts.

7 Call the appropriate interrupt routine7. Call the appropriate interrupt routine.
8. () the interrupt enable bit and restore () .

Computer Architecture 27-13

Transferring the Data between a Device
and Memory

1. Polling-based transfer (= programmed I/O)
 Periodical check of device status by CPU Periodical check of device status by CPU

while (not ready) get_status_of_the_device;

load data from I/O device;load_data_from_I/O_device;

store_the_data_into_memory;

 Best with lower-bandwidth devices
 More interested in reducing the cost of the device controller and interface

than in providing a high-bandwidth transfer
P t b d f i d t d i th t f th Put burden of moving data and managing the transfer on the processor

Computer Architecture 27-14

2. Interrupt Driven Transfer

 Common characteristics with programmed I/O
 () still transfers data in small number of bytes.
 Best with lower-bandwidth devices
 More interested in reducing the cost More interested in reducing the cost

 Difference
 () informs the processor when ready () informs the processor when ready
 Relieving the processor from having to wait for every I/O

 I/O operation/ p
 OS simply works on other tasks while data is being read from or written

to the device.
O i t t OS d th t t t h k f On interrupts, OS reads the status to check for errors.

 If none, OS transfers data.
 When I/O completed OS can inform the program When I/O completed, OS can inform the program.

Computer Architecture 27-15

