Lecture 27
Polling and Interrupt

Byung-gi Kim
School of Computing
Soongsil University

W

6. Storage and Other 170 Topics

6.1 Introduction

6.2 Dependability, Reliability, and Availability

6.3 Disk Storage

6.4 Flash Storage

6.5 Connecting Processors, Memory, and 1/0 Devices

6.6 Interfacing 1/0 Devices to the Processor, Memory,
and Operating System

6.7 1/0 Performance Measures: Exam
File Systems

6.8 Designing an I/0 System

6.9 Parallelism and 1/0: RAID

6.10 Real Stuff: Sun Fire x4150 Server

mples from Disk and

Computer Architecture 27-1

Giving Commands to 1/0 Devices

HIOE HA
E clolEf 2| X| A

HO|E] pmm=n-mms
HE/H B XIAH . K i
o R

= Mo % 2

0|z i

> Etgi‘:l <« 3|2 HINHE...E Ef
- > Hoj3|z i :
ez P —— LI s

= Status register
+» Done bit and Error bit

= Data register
+» Data to be printed

= Operations of processor
+ Must wait until the done bit set by the printer
= Must check the error bit

Computer Architecture 27-2

Communicating with the Processor

= Polling
+ aka () 1/0 or program-controlled transfer

+ The process of periodically checking status bits to see if it is time for the
next 1/0 operation

= 1/0 device simply puts the information in a () register.
= The simplest way for an 1/0 device to communicate with the processor
= The processor is totally in control and does all the work.

+» Waste a lot of processor time
+ Because the processors are much faster than 1/0 devices

+ Read the Status register many times, only to find that the device has not yet
completed 1/0 operation.

+ Iidle loop, busy waiting, spinlock

Computer Architecture 27-3

Example Programmed Input

L Databus Interface /O bus 1
Address bus > S
. I/O
CcPU /O read . Data register) Ready 2 device
/O write Status 5 Acknowledge
register 4 4 d
/
Flag

v

CPU must check the value of the flag
- wasting time

Computer Architecture 27-4

Programmed Input Programmed Output

: |

Execute Read Status Register CPU Register <- Memory

other job ,
.l

Read Status Register

NO

Ready ?
Execute

YES other job

CPU Register <- Data Register NO

¢ YES

Memory <- CPU Register Data Register <- CPU Register

i l

Computer Architecture 27-5

Interrupt-Driven 1/0

= /0 interrupts
Alleviate overhead in polling interface

Using interrupts to notify the processor when an 1/0 device requires
attention from the processor

Do not waste processor time

= Differences of I/0 interrupts from exceptions

1) () with respect to the instruction execution
+ Is not associated with any ()

2) Need more information
+ Such as () and ()

+ Different priorities of the devices

Computer Architecture 27-6

Communicating Information to Processor

= Such as identity of the interrupting device
(cf) Lecture 19 Exceptions

1. Vectored interrupt

+ Send vector address

2. Non-vectored interrupt

+» Send status field to place in the Cause register

Computer Architecture 27-7

Interrupt Priority Levels

* Interrupt priority
+ Indicate the order in which the processor should process interrupts
+« 4 1o 6 levels in UNIX
« Typically 1/0 interrupts have lower priority than internal exceptions.
+ MIPS has 6 hardware and 2 software interrupt levels.
= Status register
+ Determines who can interrupt the computer
» Interrupt enable & interrupt mask
+« User mode: 1 when in user mode, O when in kernel mode
» Exception level: 1 after an exception occurs

Computer Architecture 27-8

Key Registers

= Status register

Exception
Interrupt
enable

User
mode
level

15

o

Ia
——
[

Interrupt
mask
" Cause register
31 15 8 6 2
Branch Pending Exception
delay interrupts code

Figure 6.11

Computer Architecture 27-9

Daisy-chain Priority Interrupt

vector address

CPU data bus

T v
VAD 0

priority in
\ Device 0

/'

/
priority out —

TVAD1

—= Pl _, PO|—»

Device 1
=] PO

TUADE

SR

Device 2

To next

Pl PO [l =i

Interrupt request

) >

Computer Architecture 27-10

Interrupt acknowledge

CPU

Parallel Priority Interrupt

Interrupt
register

Highest __p

priority

Lowest
priority

Computer Architecture 27-11

3

Interrupt
acknowledge
from CPU

—

2

—~

'

'

D,

Dy

=

Priority
encoder A f—»

Figure 3-17

I

1

RN

0

Mask

register

Yy oY oYy oy oy oy

V.
—

Interrupt
to CPU

I=
o

Interrupt Handling in MIPS

= Exception handler
+ 8000 0180, In the kernel space

+» Examines the exception’s cause and jumps to an appropriate point in the
operating system

= Cause of exception
Mumbor [Namo |Cmusoofexcoption

] Int interrupt (hardware)
4 AdEL address error exception (load or instruction fetch)
5 AdES address error exception (store)
5] IEE bus error on instruction fetch
Fi DBE bus error on data load or store
8 Sys syscall exception
2] Ep breakpoint exception
10 Rl reserved instruction exception
11 CpU coprocessor unimplemented
12 Ov arithmetic overflow exception
13 Tr trap
15 FPE floating point

Computer Architecture 27-12

Interrupt Handling

1. Logically AND the () field and the
() field.

2. Select the highest priority interrupt.
Save the interrupt () .

4. Change the interrupt mask.
Disable all interrupts of equal or lower priority.

Save the () .
() the interrupt enable bit.
Allow higher-priority interrupts.
Call the appropriate interrupt routine.
() the interrupt enable bit and restore (

Computer Architecture 27-13

Transferring the Data between a Device
and Memory

1. Polling-based transfer (= programmed 1/0)
+ Periodical check of device status by CPU
while (not ready) get status of the device;
load data from 1/0 device;
store_the data i1nto _memory;

+ Best with lower-bandwidth devices

+~ More interested in reducing the cost of the device controller and interface
than in providing a high-bandwidth transfer

+ Put burden of moving data and managing the transfer on the processor

Computer Architecture 27-14

2. Interrupt Driven Transfer

= Common characteristics with programmed 1/0
R) still transfers data in small number of bytes.
+ Best with lower-bandwidth devices
+ More interested in reducing the cost

= Difference
R) informs the processor when ready
+ Relieving the processor from having to wait for every 1/0

= |/0 operation

« OS simply works on other tasks while data is being read from or written
to the device.

« On interrupts, OS reads the status to check for errors.
+ If none, OS transfers data.
+ When 1/0 completed, OS can inform the program.

Computer Architecture 27-15

