Lecture 19
Exceptions

Byung-gi Kim
School of Computing
Soongsil University

R

4. The Processor

4.1 Introduction

4.2 Logic Design Conventions

4.3 Building a Datapath

4.4 A Simple Implementation Scheme

4.5 An Overview of Pipelining

4.6 Pipelined Datapath and Control

4.7 Data Hazards: Forwarding versus Stalling
4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism and Advanced Instruction-Level
Parallelism

4.11 Real Stuff: the AMD Opteron X4 (Barcelona) Pipeline

Computer Architecture 19-1

4.9 Exceptions

= Who can stop the running program ?

Who can switch the running program in processor ?
+ Software cannot but hardware control signals can do.

+» Normally, control signals are generated in the processor as the running
program specifies.

= S0, we need a control signal which is independent of the running program.

» It forces processor to execute the instructions at a specified address
Instead of following the normal program flow.

= Exceptions and interrupts

+ Events other than branches or jumps that change the normal flow of
Instruction execution

N) events requiring change in flow of control
R)-generated function calls

Computer Architecture 19-2

Exceptions and Interrupts

= Exception
= An unscheduled event that disrupts program execution

" Interrupt
+ An exception that comes from () of the processor

Type of event W MIPS terminology

I/0 device request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using'an undefined instruction Internal Exception

Hardware maliunctions Either Exception or interrupt

Computer Architecture 19-3

Causes of Exceptions

= Asynchronous (external interrupt)
+ Input/output device service request
+ timer expiration
+ power failure
+ hardware malfunction

= Synchronous (internal exception = trap)
+ undefined opcode
+ privileged instruction
+ arithmetic overflow
+ misaligned memory access

+ Vvirtual memory exceptions
+ page faults, TLB misses, protection violations

= software exceptions
+ system calls ... SVC or 1nt instruction

Computer Architecture 19-4

How Exceptions Are Handled
INn the MIPS Architecture

= In MIPS, exceptions managed by a System Control Coprocessor
(CPO)
1. Save address of the offending (or interrupted) instruction + 4
= In MIPS, Exception Program Counter (EPC) < PC

2. Transfer control to OS at some specified address
+ Read cause, and transfer to relevant handler

3. OS can then take the appropriate action

+ If restartable
+ Take corrective action
+ use EPC to return to program
+» Otherwise
+ Terminate program
+ Report error using EPC, cause, ...

Computer Architecture 19-5

Communicating the Reason for an Exception

* Non-vectored interrupt
+ Single interrupt handler shared by all interrupts
= () in the interrupt handler
=~ Then jump to the device’s service routine

= Vectored interrupt
 ()

+ Memory address of an interrupt handler or index of the interrupt vector table
(Interrupt Descriptor Table in x86)

= Interrupting device supplies interrupt vector to CPU

= Interrupt vector is used to generate the address of the handler routine for
the interrupt

Computer Architecture 19-6

Vectored vs. Polled

Interrupt vector table

Interrupt K Memory

occurs Address of interrupt A

Address of interrupt B

N

Address of interrupt K

Interrupt A
service routine

Interrupt K
service routine

Computer Architecture 19-7

Jump to K
service routine

Interrupt K

Memory

Occurs

L.

General interrupt
polling routine

QH

Interrupt A
service routine

s devices to determine
which device, then

Jump to K
service routine

Interrupt K
service routine

Responsibilities of Hardware and OS

= Hardware saves the current PC and status flags.

= Hardware disables all interrupts.

= Hardware determines cause of the interrupt. (vectored)

= Hardware loads new PC and flags.

= OS saves the registers and interrupt masks.

= OS determines cause of the interrupt. (nonvectored)

= OS sets new interrupt masks.

= OS enables interrupts.

= OS services the interrupt. ® ISR (interrupt service routine)
= OS restores the registers and interrupt masks.

= OS executes an interrupt return instruction to load saved PC and
flag values.

Computer Architecture 19-8

INT
NUM

IDT
(256 entries)

code-segment

/

Interrupt-gate

ISR

47

Vectored Interrupt in Pentium

Real mode

IDT

0000
0001
0002
0003
0o04
0005
0006
ooz
goos
0009
000A
QooB

03FC
03FD
03FE
03FF

16 15

IP low byte

IP high byte

CS low byte

CS high byte

IP low byte

IP high byte

CS low byte

CS high byte

IP low byte

IP high byte

CS low byte

CS high byte

IP low byte

IP high byte

CS low byte

CS high byte

f int type 0

2
l| int type 1
¢

l| int type 2

/

L int type 255

J

0

base address[31..0]

segment-limit[15..0

A

32-hits

\ 4
A

16-bits

Computer Architecture 19-9

IDTR

Interrupt Descriptor

* Interrupt Descriptor Table (IDT)
+ Interrupt vector table
+» Up to 256 interrupt vectors, 8 bytes/vector — 2KB
+« INT_NUM between 0x0 and Ox1F are reserved for exceptions.

IDT base Register (IDTR)
+ Store the physical base address and the length of the IDT

= 1Nt X Instruction

+» Generating a software interrupt
+« X = Interrupt number (0 ~ 255)

device %
device

8259A
Programmable Interrupt Controller

Interrupt
number

Computer Architecture 19-10

Processor

MIPS Interrupts

= Non-vectored interrupt

+ Using status register (e.g. Cause register)
+» PC <= 8000 0180

31 15 8
Branch FPending Exception
delay interrupts code

= Vectored interrupt
= Jump address is determined by the cause of the exception

Exception type Exception vector address (in hex)

Undefined instruction 8000 000044
Arithmetic overflow 8000 0180,

Computer Architecture 19-11

Exceptions In a Pipelined Implementation

¥

)

E
0
_|m
Ll u -
1 X
r I ol
MY ALY u
- X
M Data
—u r memory [J
-

I
88
Y

H
[

Ses
— e[=13)§

Figure 4.66

Computer Architecture 19-12

Example: Exception in a Pipelined Computer

* Program :
40,x Sub $11, $2, $4
44,.. and $12, $2, $5
48,., or $13, $2, $6
4C o add $1, $2, $1
50, Slt $15, $6, $7
54,., Ilw $16, 50($7)

= Exception handling program :
80000180, sw $25, 1000($0)
80000184, sw $26, 1004($0)

= Overflow exception in the add instruction

Computer Architecture 19-13

[Answer] - Clock 6: Overflow Detection

Iw $16, 50($7) \ slt $15, $6, $7 : add $1, $2, $1 : or$13,... | and $12,
I : EX.Flush I
IF.Flush : - i i |
. ID.Flush : : |
! Hazard i i |
detection L ! !
__unit /] : !

L 1 12
B0OCO1ED _._I
Bogooran || 54

Data
memory

Clock 6

Figure 4.67-upper

Computer Architecture 19-14

[Answer] - Clock 7: Flushing Instructions

sw 325, 1000($0) bubble (nop) | bubble | bubble ,or$13,...
; : EX.Flush |
|F.Flugh ! - ! ; ;
ID.Flush : ! !
Hazard "\ : ! !
detection : I !
x |

| =] §}

2

__unkt / Nﬂ |
D u oo |
o : o-X E)UM:EM !
M 1
Control u 0 (‘:‘Jﬂ Tz el]
-L’.(J 0=l X

L

‘ooo_
m
>
3

] i
BOOBO18G =
BOGUCT B4

ui—r” P o,

x

- "
Clock 7 : | @‘
: | unlt f

Figure 4.67-lower

Computer Architecture 19-15

4.10 Parallelism and Advanced ILP

* Instruction level parallelism (1LP)
+ Executing multiple instructions in parallel

= Static multiple issue
+ Very Long Instruction Word (VLIW)
« Explicitly Parallel Instruction Computer (EPIC)

* Dynamic multiple issue
» Superscalar processors
+» Dynamic pipeline scheduling

Computer Architecture 19-16

Real Products

Comp

Microprocessor Year Clock Rate | Pipeline Issue Out-of- Cores Power
Stages width order/
Speculation
1486 1989 25MHz 5 1 No 1 SW
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W
AMD Phenom 11 2008 3700MHz 13(1) 3 Yes 6 125W
16(FP)
UltraSparc 111 2003 1950MHz 14 4 No 1 90w
UltraSparc T1 2005 1200MHz 6 1 No 8 70W
MIPS R10000 1996 200MHz 7 4 Yes 1
MIPS32 1074K 2010 1500MHz 15 4 Yes 4
ARMY7 3
ARM11 8 1
ARM Cortex-A15 2011 2500MHz 15 (1) 3 Yes 1~8
MPCore 17~25(FP)

er Arcnitecudre 19-17

4.11 Real Stuff:
AMD Opteron X4(Barcelona)

Branch

y

prediction

Instruction cache

v

Instruction prefetch
and decode

1 4

'

RISC-operation queue

'

Dispatch and register remaining

72 physical
registers

*4

Register file

'
I I

Integer and floating-point operation queue

Figure 4.74

Integer

ALU.
Multiplier

Integer
ALU

Integer
ALU

Floating
point
Misc

Load/Stare queue

Data
cache

Computer Architecture 19-18

Commit
unit

The Opteron X4 Pipelines

* Integer pipeline
+ 12 stages

| . Decode
ns;ruc::on and
ete translate
Number of > 3
clock cycles

RISC-operation

queue

* Floating-point pipeline
« 17 stages

Computer Architecture 19-19

Y

Reorder
buffer
allocation +
register
renaming

2

Reorder
buffer

—_—

Y

Scheduling
+ dispatch »| Execution - Daé&:)ncqer:;:i?e/
unit
1
2 1 2

