
Lecture 19Lecture 19
Exceptions

Byung-gi Kim
School of ComputingSchool of Computing
Soongsil University

4. The Processor

4.1 Introduction
4.2 Logic Design Conventions
4.3 Building a Datapath
4.4 A Simple Implementation Scheme
4.5 An Overview of Pipelining
4.6 Pipelined Datapath and Control
4.7 Data Hazards: Forwarding versus Stalling
4.8 Control Hazards
4.9 Exceptions
4.10 Parallelism and Advanced Instruction-Level

Parallelism
4.11 Real Stuff: the AMD Opteron X4 (Barcelona) Pipeline

Computer Architecture 19-1

4.9 Exceptions

 Who can stop the running program ?
Who can switch the running program in processor ?
 Software cannot but hardware control signals can do.

N ll t l i l t d i th th i Normally, control signals are generated in the processor as the running
program specifies.

 So, we need a control signal which is independent of the running program., g p g p g
 It forces processor to execute the instructions at a specified address

instead of following the normal program flow.

E ti d i t t Exceptions and interrupts
 Events other than branches or jumps that change the normal flow of

instruction executioninstruction execution
 () events requiring change in flow of control
 ()-generated function calls

Computer Architecture 19-2

Exceptions and Interrupts

 Exception
 An unscheduled event that disrupts program execution

 Interrupt
A ti th t f () f th An exception that comes from () of the processor

Computer Architecture 19-3

Causes of Exceptions

 Asynchronous (external interrupt)
 input/output device service request
 timer expiration
 power failure power failure
 hardware malfunction

 Synchronous (internal exception = trap)Synchronous (internal exception trap)
 undefined opcode
 privileged instruction
 arithmetic overflow
 misaligned memory access

i t l ti virtual memory exceptions
 page faults, TLB misses, protection violations

 software exceptionsp
 system calls … SVC or int instruction

Computer Architecture 19-4

How Exceptions Are Handled
i th MIPS A hit tin the MIPS Architecture

In MIPS exceptions managed by a System Control Coprocessor In MIPS, exceptions managed by a System Control Coprocessor
(CP0)

1. Save address of the offending (or interrupted) instruction + 41. Save address of the offending (or interrupted) instruction + 4
 In MIPS, Exception Program Counter (EPC) ← PC

2. Transfer control to OS at some specified addressp
 Read cause, and transfer to relevant handler

3. OS can then take the appropriate action
 If restartable

 Take corrective action
 use EPC to return to programp g

 Otherwise
 Terminate program
 Report error using EPC cause Report error using EPC, cause, …

Computer Architecture 19-5

Communicating the Reason for an Exception

 Non-vectored interrupt
 Single interrupt handler shared by all interrupts
 () in the interrupt handler
 Then jump to the device’s service routine Then jump to the device s service routine

 Vectored interrupt
 () ()

 Memory address of an interrupt handler or index of the interrupt vector table
(Interrupt Descriptor Table in x86)

Inte pting de i e s pplies inte pt e to to CPU Interrupting device supplies interrupt vector to CPU
 Interrupt vector is used to generate the address of the handler routine for

the interruptp

Computer Architecture 19-6

Vectored vs. Polled

Interrupt vector table

Computer Architecture 19-7

Responsibilities of Hardware and OS

 Hardware saves the current PC and status flags.
 Hardware disables all interrupts.
 Hardware determines cause of the interrupt. (vectored)
 Hardware loads new PC and flags.
 OS saves the registers and interrupt masks.
 OS determines cause of the interrupt. (nonvectored)
 OS sets new interrupt masks.
 OS enables interrupts.
 OS services the interrupt.  ISR (interrupt service routine)
 OS restores the registers and interrupt masks.
 OS executes an interrupt return instruction to load saved PC and

flag values.
Computer Architecture 19-8

Vectored Interrupt in Pentium

IDT
code-segment

Real modeIDT
(256 entries) ISR

Real mode
IDT

Interrupt-gate

0151647
INT
NUM base_address[31..0] segment-limit[15..0]

IDTR

16-bits32-bits

Computer Architecture 19-9

IDTR

Interrupt Descriptor

 Interrupt Descriptor Table (IDT)
 Interrupt vector table
 Up to 256 interrupt vectors, 8 bytes/vector  2KB
 INT NUM between 0x0 and 0x1F are reserved for exceptions INT_NUM between 0x0 and 0x1F are reserved for exceptions.

 IDT base Register (IDTR)
 Store the physical base address and the length of the IDT Store the physical base address and the length of the IDT

 int x instruction
 Generating a software interruptg p
 x = interrupt number (0 ~ 255)

d i IRQ0device

device 8259A
Programmable Interrupt Controller Processor

IRQ0

IRQ1

IRQ2

Interrupt
number

Computer Architecture 19-10

MIPS Interrupts

 Non-vectored interrupt
 Using status register (e.g. Cause register)
 PC ← 8000 018016

 Vectored interrupt
 Jump address is determined by the cause of the exception

Computer Architecture 19-11

Exceptions in a Pipelined Implementation

Figure 4 66Figure 4.66

Computer Architecture 19-12

Example: Exception in a Pipelined Computer

 Program :
40hex sub $11, $2, $4
44hex and $12, $2, $5
48 or $13 $2 $648hex or $13, $2, $6
4chex add $1, $2, $1
50hex slt $15, $6, $7
54hex lw $16, 50($7)

 Exception handling program :
80000180hex sw $25, 1000($0)
80000184hex sw $26, 1004($0)

 Overflow exception in the add instruction

Computer Architecture 19-13

[Answer] - Clock 6: Overflow Detection

Figure 4 67-upperFigure 4.67-upper

Computer Architecture 19-14

[Answer] - Clock 7: Flushing Instructions

Figure 4 67-lowerFigure 4.67-lower

Computer Architecture 19-15

4.10 Parallelism and Advanced ILP

 Instruction level parallelism (ILP)
 Executing multiple instructions in parallel

 Static multiple issue
V L I t ti W d (VLIW) Very Long Instruction Word (VLIW)

 Explicitly Parallel Instruction Computer (EPIC)

 Dynamic multiple issue Dynamic multiple issue
 Superscalar processors
 Dynamic pipeline schedulingy p p g

Computer Architecture 19-16

Real Products

Microprocessor Year Clock Rate Pipeline
Stages

Issue
width

Out-of-
order/

l

Cores Power

Speculation

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103WP4 Prescott 2004 3600MHz 31 3 Yes 1 103W

AMD Phenom II 2008 3700MHz 13(I)
16(FP)

3 Yes 6 125W

UltraSparc III 2003 1950MHz 14 4 No 1 90WUltraSparc III 2003 1950MHz 14 4 No 1 90W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

MIPS R10000 1996 200MHz 7 4 Yes 1

MIPS32 1074K 2010 1500MH 15 4 Y 4MIPS32 1074K 2010 1500MHz 15 4 Yes 4

ARM7 3

ARM11 8 1

Computer Architecture 19-17

ARM Cortex-A15
MPCore

2011 2500MHz 15 (I)
17~25(FP)

3 Yes 1~8

4.11 Real Stuff:
AMD Opteron X4(Barcelona)AMD Opteron X4(Barcelona)

72 physical
registers

Figure 4.74Figure 4.74

Computer Architecture 19-18

The Opteron X4 Pipelines

 Integer pipeline
 12 stages

 Floating-point pipeline
 17 stages

Computer Architecture 19-19

