
Lecture 18
Control Hazards

Byung-gi Kim
School of Computing
Soongsil University

4. The Processor

4.1 Introduction
4.2 Logic Design Conventions
4.3 Building a Datapath
4.4 A Simple Implementation Scheme
4.5 An Overview of Pipelining
4.6 Pipelined Datapath and Control
4.7 Data Hazards: Forwarding versus Stalling
4.8 Control Hazards
4.9 Exceptions
4.10 Parallelism and Advanced Instruction-Level

Parallelism
4.11 Real Stuff: the AMD Opteron X4 (Barcelona) Pipeline

Computer Architecture 18-1

 Control hazard or branch hazard
 When the proper instruction cannot execute in the proper pipeline clock

cycle because the instruction that was fetched is not the one that is
needed

 That is, the flow of instruction addresses is not what the pipeline
expected.

 Pipeline can’t always fetch correct instruction
 The delay in determining the proper instruction to fetch

 Solutions
1. () on branch
2. Branch ()
3. () branch

4.8 Control Hazards

Computer Architecture 18-2

Impact of the Pipeline on the Branch

 When branch outcome is determined in MEM stage

PC

Flush these
instructions
(Set control
values to 0)

Figure 4.61

Computer Architecture 18-3

Reducing the Delay of Branches

 Branch execution in () stage, not in MEM stage
 Only 1 instruction in IF stage should be flushed.

 1 clock cycle of penalty

 Modifications of the datapath
 Moving () to ID stage

 Inserting () in ID stage

 New control signal : IF.Flush
 Zeroing the instruction field of () register

(cf) nop = 0000 0000hex

Computer Architecture 18-4

Final Datapath and Control

Figure 4.65
Computer Architecture 18-5

Solution 1 – Stall on Branch

 Wait until branch outcome determined before fetching next
instruction
 See §4.5

 A penalty of () clock cycles for each branch
 When branch execution in MEM stage

 () cycle penalty with branch execution in ID stage

Figure 4.31

Computer Architecture 18-6

Example in p.327 (p.305 of Korean edition)
Performance of “Stall on Branch”

 Estimate the impact on CPI of stalling on branches.

[Answer]
Frequency of branches: 17% in SPECint2006

CPI of branch = 1 clock + 1 extra clock for the stall

Other instructions = 1 clock

Thus,

Average CPI = 1 + 0.17x1 = 1.17

Computer Architecture 18-7

Solution 2 – Branch Prediction

 Longer pipelines can’t readily determine branch outcome early
 Stall penalty becomes unacceptable

 Branch Prediction
 A method of resolving a branch hazard that assumes a given outcome for

the branch and proceeds from that assumption rather than waiting to
ascertain the actual outcome.

 Predict outcome of branch
 Only stall if prediction is wrong

Computer Architecture 18-8

 Static branch prediction
 predicts before a programs runs
 using either compile time heuristics or profiling

 Dynamic branch prediction
 predicts at run-time
 by recording information, in hardware, of past branch history

during a program’s execution

Static prediction

1. Assume branch taken
2. Assume branch not taken
3. Prediction by opcode
4. Prediction by direction

Dynamic prediction

1. Branch prediction buffer
• 1-bit predictor
• 2-bit predictor

2. Correlating branch predictor
3. Tournament branch predictor
4. Branch target buffer

Static and Dynamic Branch Prediction

Computer Architecture 18-9

Assume Branch Not Taken

 Continue execution down the sequential instruction stream

 If branch taken,

discard the instructions in the pipeline.

 Changing the original control values to 0s

 Flushing the 3 instructions in the IF, ID and EX stages when the branch
reaches () stage

Computer Architecture 18-10

Misprediction Penalty

Figure 4.32

Computer Architecture 18-11

Example: Pipelined Branch

 Show what happens both when the branch is taken and
when not taken.
 Assume the optimization on branch not taken.

36 sub $10, $4, $8
40 beq $1, $3, 7 # pc-relative branch

to 40+4+7*4=72
44 and $12, $2, $5
48 or $13, $2, $6
52 add $14, $4, $2
56 slt $15, $6, $7

····
72 lw $4, 50($7)

Computer Architecture 18-12

[Answer: When branch taken] - Clock 3

Figure 4.62-upper

Computer Architecture 18-13

[Answer: When branch taken] - Clock 4

Figure 4.62-lower

Computer Architecture 18-14

Dynamic Branch Prediction

 Dynamic branch prediction
 Prediction of branches at runtime using run time information
 Look up the address of the instruction to see if a branch was taken the

last time this instruction was executed
 If so, to begin fetching new instructions from the same place as the last

time

 Branch prediction buffer (aka branch history table)
 Small table indexed by the lower portion of the address of the branch

instruction
 Contains a bit that says whether the branch was recently taken or not
 To execute a branch

 Check table, expect the same outcome
 Start fetching from fall-through or target
 If wrong, flush pipeline and flip prediction

Computer Architecture 18-15

Branch History Table (BHT)

 Accessed early in the pipeline using the branch instruction PC
 Updated using the actual outcome

Branch PC

0 Prediction

0 Not taken
1 Taken

Actual outcome

Computer Architecture 18-16

Example: Loops and Prediction

 Loop branch
 1 not taken after 9 taken

branches

 What is the prediction
accuracy?

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer

[Answer]
 End of loop case, when it exits instead of looping as before
 First time through loop on next time through code, when it predicts exit i

nstead of looping
 Only 80% accuracy even if loop 90% of the time

Computer Architecture 18-17

2-bit Branch Prediction Scheme

 Changing prediction only if get misprediction twice
[ref] “Branch prediction strategies and branch target buffer design,” IEEE

Computer, Vol. 17, No.1, Jan. 1984, pp.6-22.

Figure 4.63

00 01

1011

Computer Architecture 18-18

1%

0%

1%

5%

6% 6%

11%

4%

6%

5%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

nasa7 matrix300 tomcatv doducd spice fpppp gcc espresso eqntott li

F
re

q
ue

n
c
y

o
f M

is
p
re

d
ic

tio
n
s

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

18%

Accuracy of Different Schemes

Computer Architecture 18-19

Solution 3 – Delayed Branch

 Delayed branch
 Always executes the next sequential instruction,

with the branch taking place after that one instruction delay

 Branch delay slot
 The slot directly after a delayed branch instruction
 Filled by a safe instruction

 Delayed branch vs. dynamic branch prediction
 Delayed branch was a simple and effective solution for a 5-stage pipeline

issuing one instruction each clock cycle.
 As processors go to both longer pipelines and issuing multiple instructions

per clock cycle, the branch delay becomes longer, and a single delay slot
is insufficient.

 Hence, delayed branch has lost popularity compared to more expensive
but more flexible dynamic approaches

Computer Architecture 18-20

