Lecture 18
Control Hazards

Byung-gi Kim
School of Computing
Soongsil University

4. The Processor

4.1 Introduction

4.2 Logic Design Conventions

4.3 Building a Datapath

4.4 A Simple Implementation Scheme

4.5 An Overview of Pipelining

4.6 Pipelined Datapath and Control

4.7 Data Hazards: Forwarding versus Stalling
4.8 Control Hazards

4.9 EXxceptions

4.10 Parallelism and Advanced Instruction-Level
Parallelism

4.11 Real Stuff: the AMD Opteron X4 (Barcelona) Pipeline

Computer Architecture 18-1

4.8 Control Hazards

= Control hazard or branch hazard

When the proper instruction cannot execute in the proper pipeline clock

cycle because the instruction that was fetched is not the one that is
needed

That is, the flow of instruction addresses is not what the pipeline
expected.

Pipeline can’t always fetch correct instruction
The delay in determining the proper instruction to fetch
= Solutions

1. () on branch
2. Branch ()
3. () branch

Computer Architecture 18-2

Impact of the Pipeline on the Branch

= When branch outcome is determined in MEM stage

P

Time (in clock cycles)

CC1 ccz2

rogram

execution
order
(in instructions)

40 beq $1, $3, 28 El.—I—Dr

44 and $12, $2, $5
48 or $13, $6, $2

52 add $14, $2, $2

—

A

| 72 Iw $4, 50($7)

Computer Architecture 18-3

CC3

Flush these
Instructions
(Set control
values to 0)

PC

Figure 4.61

Reducing the Delay of Branches

* Branch execution in () stage, not in MEM stage

= Only 1 instruction in IF stage should be flushed.

+ 1 clock cycle of penalty

= Modifications of the datapath

= Moving () to ID stage
« Inserting () in ID stage

= New control signal : IF.Flush

+ Zeroing the instruction field of () reqgister

(cf) nop = 0000 0000,

Computer Architecture 18-4

Final Datapath and Control

N\

IF.Flush)

unit
ID/EX
o |_I\iEM/WB
WB

W
" .
Contrg, \ > u M |_|\iEM/WB
0| X - | p | —
IF/ID A EX M WB—
1 +
+
4

Y

Shift
left 2 >
M
- - U e
\ X
Registel
—| Instruction t _ Data
PC memory || ALl "| memory [
> i’ - M
> u <yt
o x| L
/\ k*i
Sign-
W

Figure 4.65
Computer Architecture 18-5

Solution 1 — Stall on Branch

= Wait until branch outcome determined before fetching next
Instruction
+ See §4.5
= A penalty of () clock cycles for each branch
» When branch execution in MEM stage

= () cycle penalty with branch execution in ID stage

Program

execution . 200 400 600 800 1000 1200 1400
Time I I I | | T T
order

(in instructions)

Y

add $4, 85,86 |t |Rea| AL aﬁ’féis Reg
| » | Instruction Data
beq $1‘ $2-‘ 40 200 pS fetch access
bubble/bubble/(bubble/ bubble bubble
or $7, $8, $9 <« |Instruction Data :
Y 400 ps fetch access | °9 Flgure 4.31

Computer Architecture 18-6

Example in p.327 (p.305 of Korean edition)
Performance of “Stall on Branch”

» Estimate the impact on CPI of stalling on branches.

[Answer]
Frequency of branches: 17% in SPECIint2006
CPI of branch = 1 clock + 1 extra clock for the stall
Other instructions = 1 clock

Thus,
Average CPI =1 + 0.17x1 = 1.17

Computer Architecture 18-7

Solution 2 — Branch Prediction

= Longer pipelines can’t readily determine branch outcome early
+ Stall penalty becomes unacceptable

= Branch Prediction

+ A method of resolving a branch hazard that assumes a given outcome for

the branch and proceeds from that assumption rather than waiting to
ascertain the actual outcome.

+ Predict outcome of branch
+ Only stall if prediction is wrong

Computer Architecture 18-8

Static and Dynamic Branch Prediction

= Static branch prediction
+ predicts before a programs runs
+ using either compile time heuristics or profiling

= Dynamic branch prediction

+ predicts at run-time

+ by recording information, in hardware, of past branch history
during a program’s execution

Static prediction Dynamic prediction

Assume branch taken 1. Branch prediction buffer

1-bit predictor

2-bit predictor
2. Correlating branch predictor
Tournament branch predictor

4. Branch target buffer

Assume branch not taken
Prediction by opcode
Prediction by direction

B

o

Computer Architecture 18-9

Assume Branch Not Taken

= Continue execution down the sequential instruction stream
= |f branch taken,

discard the instructions in the pipeline.

+» Changing the original control values to Os

+ Flushing the 3 instructions in the IF, ID and EX stages when the branch
reaches () stage

Computer Architecture 18-10

Misprediction Penalty

Program
execution
order

(in instructions)

add $4, $5, $6

beq $1, $2, 40

y

Program
execution
order

(in instructions)

add $4, $5, $6

beq $1, $2, 40

Time

w $3, 300($0)

Time

|

Computer Architecture 18-11

—or $7, $8, $9

200 400 600 800 1000 1200 1400
Instruction Data
fetch Reg ALY access Reg
Instruction Data
200 ps fetch Reg ALU access Reg
~—— 1 Instruction Data
200 ps| fetch Reg| ALU access |9
200 400 600 800 1000 1200 1400
Instruction Data
fetch Ry ALY access Fg
Instruction Data
200 DS fetch hegl ‘ALU access Reg
bubble/ bubble/(bubble/ bubbley(bubble
@
-« *lInstruction Data
400 ps fetch Reg | AU access | N9

Figure 4.32

Example: Pipelined Branch

= Show what happens both when the branch is taken and
when not taken.

= Assume the optimization on branch not taken.
36 sub $10, $4, $8
40 beq $1, $3, 7 # pc-relative branch
to 40+4+7*4=72

44 and $12, $2, $5
48 or $13, $2, $6
52 add $14, $4, $2
56 st $15, $6, $7

72 v $4, 50($7)

Computer Architecture 18-12

[Answer: When branch taken] - Clock 3

and $12,$2,85 beq $1, $3, 7 ' sub$10,$4,88 before<t> ' before<2>

IF.Flush

/ Hazard

1
1
1
:
1
detection |
unit
I

l IDEEX

)
<
%----------------- _

l

$3
o 38 Data
. memory J

Clock 3

Figure 4.62-upper

Computer Architecture 18-13

[Answer: When branch taken] - Clock 4

Iw $4, 50($7) | Bubble (nop) | beq $1, $3, 7 ' sub $10,... . Dbefore<i>
IF.Flush ' ! ! !

Hazard

1

:‘ detection -l
unit)

I—B_ °

Registers

eeeee

Clock 4

Figure 4.62-lower

Computer Architecture 18-14

Dynamic Branch Prediction

= Dynamic branch prediction
+ Prediction of branches at runtime using run time information

+» Look up the address of the instruction to see if a branch was taken the
last time this instruction was executed

» If so, to begin fetching new instructions from the same place as the last
time
* Branch prediction buffer (aka branch history table)

+» Small table indexed by the lower portion of the address of the branch
Instruction

» Contains a bit that says whether the branch was recently taken or not

+ To execute a branch
+ Check table, expect the same outcome
+ Start fetching from fall-through or target
+ If wrong, flush pipeline and flip prediction

Computer Architecture 18-15

Branch History Table (BHT)

= Accessed early in the pipeline using the branch instruction PC
» Updated using the actual outcome

Branch PC

Prediction

O Not taken
1 Taken

_ Actual outcome

Computer Architecture 18-16

Example: Loops and Prediction

A

* Loop branch outer:- ..

« 1 not taken after 9 taken
branches inner: ..

= What Is the prediction
accuracy?

A

beq .., .., Inner|—

beq .., .., outer

[Answer]

+ End of loop case, when it exits instead of looping as before

= First time through loop on next time through code, when it predicts exit |
nstead of looping

= Only 80% accuracy even if loop 90% of the time

Computer Architecture 18-17

2-bit Branch Prediction Scheme

= Changing prediction only if get misprediction fwice

[ref] “Branch prediction strategies and branch target buffer design,” IEEE
Computer, Vol. 17, No.1, Jan. 1984, pp.6-22.

Predict taken
00

Computer Architecture 18-18

Not taken
Predict taken
Taken N 01
Not takenl ‘ Taken
Not taken
Predict not taken
Taken "R | 10

Figure 4.63

Accuracy of Different Schemes

20% 71

18% 1

16% T

14% 1

Frequency of Mispredictions

6% [

4% T

2% T

0%

12% T

10%

8% T

4096 Entries 2-bit BHT 18%
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

nasa’ matrix300 tomcatv doducd spice foppp gcc espresso egntott li

B 4,096 entries: 2-bits per entry BUnlimited entries: 2-bits/entry ™ 1,024 entries (2,2)

Computer Architecture 18-19

Solution 3 — Delayed Branch

= Delayed branch
+ Always executes the next sequential instruction,
with the branch taking place after that one instruction delay

* Branch delay slot
« The slot directly after a delayed branch instruction
+ Filled by a safe instruction

* Delayed branch vs. dynamic branch prediction

» Delayed branch was a simple and effective solution for a 5-stage pipeline
Issuing one instruction each clock cycle.

+ As processors go to both longer pipelines and issuing multiple instructions
per clock cycle, the branch delay becomes longer, and a single delay slot
IS insufficient.

+» Hence, delayed branch has lost popularity compared to more expensive
but more flexible dynamic approaches

Computer Architecture 18-20

