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The models of signals and systems

® Physical systems are modeled by mathematical equations. e.g.

Ldil(tt> + Ri(t) + % / ilrdr =)

or
yln] — yln — 1] = Hafn — 1]

® Physical signals are modeled by mathematical functions. e.g.
temperature at a point = 6(¢)
or

z[n] = (0.3)"u[n]

® Continuous-time signals (continuous or discrete amplitude)
® Discrete-time signals (continuous or discrete amplitude)

Review

/29 .



Continuous-time signals and systems |

Transformations of continuous-time signals
Time transformation
Amplitude transformation
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Time reversal

® The time reversal transformed signal y(t) of x(t) is obtained
by replacing t with —t in the original signal x(¢). That is,

® The graph of the time-reversed signal y(¢) is the mirror image
of the original signal x(t), reflected about the vertical axis.

x(f) y(@© =x(=0)

1~ 1~

® Playing music on a CD backwards is an example of time
reversal.

Transformations of CT signals

/29 .



Time scaling

® A time-scaled version of x(t) is

y(t) = z(at)

where a is a real constant.
® |a| > 1 ~» compression in time
® |a| < 1 ~» expansion in time

® The graph of time-scaled signals

a=2
() = x(20)
L

| —05 |
-1 0 1 t

yo(2) = x(0.1¢)

1+

-10
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® A real-life example of time scaling

® When you listen to an answering-machine message on fast
forward, you can hear the voice pitch (frequency content of the
speaker’s voice) is increased. This is due to speeding up the
signal in time.

® When you play a forty-five-revolutions-per-minute (45-rpm)
analog recording at 33rpm, you can hear the voice pitch is
decreased. This is due to slowing down the signal in time.
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Time shifting

e A time-shifted version of x(t) is

y(t) = z(t —to)

where ¢, is a constant.
® t; >0 ~~ delayed in time
® t; <0 ~ advanced in time

® The graph of time-shifted signals

n®=x(-2) ya) = x(t+1)
1

OL 1 2 3 4 1 -2 -1 0 1 2t
1 b

® May seem counterintuitive. Think about where the t — ¢, is
zero.
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Combination of time transformation |

® Time scaling, shifting, and reversal can all be combined.!

® QOperation can be performed in any order, but care is required.

® Example: z(2(t — 1)) (time shifting and time scaling
combined)
® Scale first, then shift (Compress by 2, shift by 1) = Correct

2 2 2
# () (21) -1 A
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Combination of time transformation Il

® Shift first, then scale (Shift by 1, compress by 2) = Incorrect

2 2 2
N\ x(t) x(t—1) |1 x2(r=1)) 1
e . P R e T R

® Shift first, then scale (Rewrite z(2(t — 1)) = x(2t — 2), Shift
by 2, scale by 2) = Correct

® Where is 2(t — 1) equal to zero?
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Combination of time transformation IlI

® Try these by yourselves

x(t) \
—t—t— —r—t—
-4 2 0 2 4,
2(t+2
(=1/2) 1 x(2(r+2)) 1
R —t—t— R — ——+—
-2 0 2 4, -2 0 2 4,
x(—t+1) 4
—t—— ——t—
-4 2 0 2 4,
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Combination of time transformation IV

® Another try

1The contents of this slide is borrowed from the lecture slide of Prof. Cuff’s of Princeton University
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Amplitude transformation

® The general form of amplitude transformation is

y(t) = Az(t) + B

® The negative sign of A inverts the signal
® The absolute value of A determines the amplitude scaling
® The value of B shifts the amplitude of the signal up or down

:v(t% !

l /
-1 0 1 2 t -1 0 / 1 2 t
-1 L
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Time and amplitude transformation of a signal

° Try

e 2 e
| N !
2 0 R 4 t
! 1 \ L ___
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Summary: transformations of signals

Name y(t)
Time reversal x(—t)
Time scaling x(at)
Time shifting x(t—1tg)
Amplitude reversal —x(t)
Amplitude scaling Ax(t)
Amplitude shifting z(t)+ B
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Signal characteristics
Even and odd signals
Periodic signals
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Even and odd signals
® Even signal: z(t) =z (—t)

. (t)

_ L t
® Odd signal: z,(t) = —x,(—t)
2o (t)

L t

® All signals can be represented as the sum of an even signal
and an odd signal

o(t) = 3 [ot) + a(—0)] + 5 [w(6) — 2(~0)] = 2, (8) + 7,0

Signal characteristics

17/29 .



® The characterics of even and odd signals (Can you show
them?)
® The sum of two even signals is even.
® The sum of two odd signals is odd.
® The sum of an even signal and an odd signal is neither even
nor odd.
The product of two even signals is even.
The product of two odd signals is even.
The product of an even signal and an odd signal is odd.
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Periodic signals

Definition: periodic signal

A signal x(t) is periodic if

vt, x(t)=z(t+T), T>0

® The constant T is the period.
® By definition, a periodic function satisfies the equation

x(t) = z(t+nT)

where n is any integer.

® The minimum value of the period T" > 0 that satisfies the
above definition is called the fundamental period of the signal
and denoted as Tj,. The fundamental frequency is given by

1 2
fo= ?OHZ, w=2rf, = ?:rad/s
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Examples of periodic signals

x,.(t) = coswt and z(t) = sinwt
The movement of a clock pendulum (it is modeled as
sinusoids)

A sawtooth wave

x(t) = et is periodic? Yes. Because for T = 27
iL‘(t 4 T) — esin(t+27r) — eSint — l’(t)
x(t) = tes"? is periodic? No. There is no T satisfying

2t +T) = (t+ T)esin(tJrT) 2 fesint — z(t)
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The sum of continuous-time periodic signals

x(t) =z, (t) + xo(t) + -+ x5(t), where z;'s are periodic

® The sum of continuous-time periodic signals is periodic if and
only if the ratios of the periods of the individual signals are
ratios of integers.
e (If the sum is periodic), the fundamental period can be found
as follows:
1. Let Tj; the period of the first signal and Tj,; period of i-th
signal (2<i < N)
2. Convert each period ratio, T, /Ty; to an irreducible fraction
3. Find kg, the least common multiple of the denominator of the
fractions
4. Then, the fundamental period of the sum of signals is
Ty = koTy, .
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® Example

x(t) =z, (t) +25(t) +25(t) = cos(3.5t) +sin(2t) + 2 cos (7;)

® x(t) is periodic?

2 2 21 21 2 2T
3.5’ cTos = 0=
wy . Wy

2
Ty 2 4 Ty T7/6 1
:>01 _ 01 __ / _5

Ty, 35 7 Ty 35

Both are ratios of integers; therefore, x(t) is periodic.
® What is fundamental period? Since the LCM of the
denominators is 21,

2
T, =21 x 3—7; = 127(s)
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Common signals in engineering
Exponential function
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Exponential function: introduction

® A signal whose time rate of change is directly proportional to
the signal itself

dz(t) ot
T ax(t) = z(t)=Ce
® RL circuit
i(t)
R L
di(t) o di(t) R.
L o + Ri(t)=0 = Tl —i(t)

® Parameters C' and a can be complex.
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Ce: Both C and a real

Cet Ce Ce

® For a < 0, we express the exponentials as
z(t) = Ce® = CeH™, 7>0

where 7 is called the time constant of the exponential.
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® The meaning of time constant

Ce—th

C

® The derivative of z(t) at t = 0 is given by

dxz(t)
dt

C

= ——e¢
.
t=0

c

t=0 T

—t/T

If the signal continued to decay from ¢ = 0 at this rate, it
would be zero at t = 7.

® Actually, the value of the signal at t = 7 is equal to
Ce ! =0.368C. ~+ The signal has decayed to 36.8% of its
amplitude after 7 seconds.
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Ce: C complex, a imaginary

z(t) = Ce; C = Ae?? = AL, a = jw,

® x(t) can be expressed as

:L‘(t) — Aej¢€jwot frd Aej(w0t+¢)

= Acos(wyt + ¢) + jAsin(wyt + ¢)

The sinusoids are periodic, so the z(t) is also periodic
® A plot of the real part of z(t)

A cos (ot + )

" /m/\ N
AVEAVARVER
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Harmonically related complex exponentials

Harmonically related complex exponentials are a set of functions
with frequencies related by integers, of the form

z(t) = Apedteot k= 41,42, ...

® The harmonically related complex exponentials will be used

extensively when we study the Fourier series respresentation of

periodic signals.
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Ce: Both C and a complex

z(t) = Ce®; C = Ae??, a = oy + jw,

® x(t) can be expressed as
.’L’(t) — Aei®elootiwo)t — Aedoteilwot+e)

= Ae0! cos(wyt + @) +7 Aeot sin(wyt + @)
Re[z(t)] Imlz(t)]

® A plot of the real part of z(t)

Ae%' cos wot 75 >0 Ae%coswgt , 07 <0

f\\/‘/\ /\ s N

Common signals in engineering 29/29 .




	Review of last lecture
	Transformations of continuous-time signals
	Time transformation
	Amplitude transformation

	Signal characteristics
	Even and odd signals
	Periodic signals

	Common signals in engineering
	Exponential function


