

# Chapter 2. Continuous-time Signals and Systems

#### Kwangsoo Kim

Hanbat National University Department of Electronics Engineering

#### Continuous-time signals and systems I

#### Review of last lecture

Transformations of continuous-time signals Time transformation Amplitude transformation

Signal characteristics Even and odd signals Periodic signals

Common signals in engineering Exponential function

## The models of signals and systems

• Physical systems are modeled by mathematical equations. e.g.

$$L\frac{di(t)}{dt} + Ri(t) + \frac{1}{C}\int_{-\infty}^{t}i(\tau)d\tau = v(t)$$

or

$$y[n] - y[n-1] = Hx[n-1]$$

• Physical signals are modeled by mathematical functions. e.g.

temperature at a point  $= \theta(t)$ 

or

$$x[n] = (0.3)^n u[n]$$

- Continuous-time signals (continuous or discrete amplitude)
- Discrete-time signals (continuous or discrete amplitude)

#### Continuous-time signals and systems I

#### Review of last lecture

#### Transformations of continuous-time signals Time transformation Amplitude transformation

Signal characteristics Even and odd signals Periodic signals

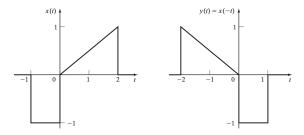
Common signals in engineering Exponential function

#### Time reversal

• The time reversal transformed signal y(t) of x(t) is obtained by replacing t with -t in the original signal x(t). That is,

$$y(t) = x(-t)$$

• The graph of the time-reversed signal y(t) is the mirror image of the original signal x(t), reflected about the vertical axis.



• Playing music on a CD backwards is an example of time reversal.

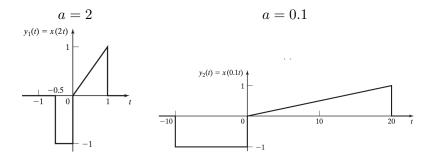
# Time scaling

• A time-scaled version of x(t) is

$$y(t) = x(at)$$

where a is a real constant.

- $|a| > 1 \rightsquigarrow$  compression in time
- $|a| < 1 \rightsquigarrow$  expansion in time
- The graph of time-scaled signals



- A real-life example of time scaling
  - When you listen to an answering-machine message on fast forward, you can hear the voice pitch (frequency content of the speaker's voice) is increased. This is due to speeding up the signal in time.
  - When you play a forty-five-revolutions-per-minute (45-rpm) analog recording at 33rpm, you can hear the voice pitch is decreased. This is due to slowing down the signal in time.

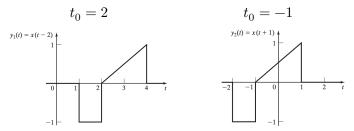
# Time shifting

• A time-shifted version of x(t) is

$$y(t) = x(t - t_0)$$

where  $t_0$  is a constant.

- $t_0 > 0 \rightsquigarrow \text{delayed in time}$
- $t_0 < 0 \rightsquigarrow$  advanced in time
- The graph of time-shifted signals

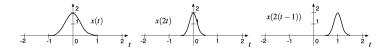


• May seem counterintuitive. Think about where the  $t-t_0$  is zero.

Transformations of CT signals

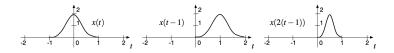
#### Combination of time transformation I

- Time scaling, shifting, and reversal can all be combined.<sup>1</sup>
- Operation can be performed in any order, but care is required.
- Example: x(2(t-1)) (time shifting and time scaling combined)
  - Scale first, then shift (Compress by 2, shift by 1) ⇒ Correct



#### Combination of time transformation II

• Shift first, then scale (Shift by 1, compress by 2)  $\Rightarrow$  Incorrect



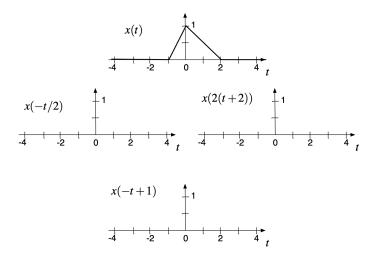
Shift first, then scale (Rewrite x(2(t − 1)) = x(2t − 2), Shift by 2, scale by 2) ⇒ Correct



• Where is 2(t-1) equal to zero?

# Combination of time transformation III

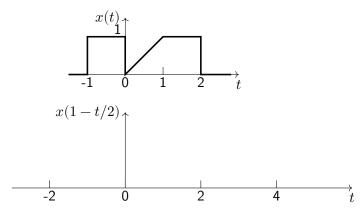
• Try these by yourselves



Transformations of CT signals

Combination of time transformation IV

• Another try



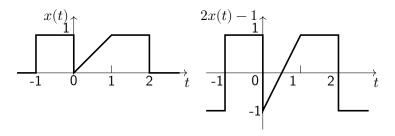
 $<sup>^1{\</sup>rm The}$  contents of this slide is borrowed from the lecture slide of Prof. Cuff's of Princeton University Transformations of CT signals

#### Amplitude transformation

• The general form of amplitude transformation is

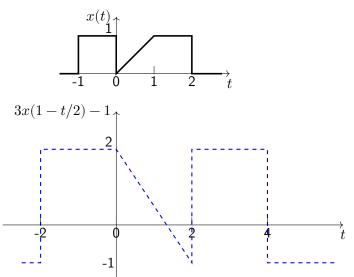
y(t) = Ax(t) + B

- The negative sign of A inverts the signal
- The absolute value of A determines the amplitude scaling
- The value of B shifts the amplitude of the signal up or down



Time and amplitude transformation of a signal

• Try



Transformations of CT signals

# Summary: transformations of signals

| Name               | y(t)       |
|--------------------|------------|
| Time reversal      | x(-t)      |
| Time scaling       | x(at)      |
| Time shifting      | $x(t-t_0)$ |
| Amplitude reversal | -x(t)      |
| Amplitude scaling  | Ax(t)      |
| Amplitude shifting | x(t) + B   |

#### Continuous-time signals and systems I

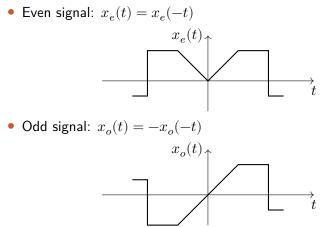
Review of last lecture

Transformations of continuous-time signals Time transformation Amplitude transformation

Signal characteristics Even and odd signals Periodic signals

Common signals in engineering Exponential function

#### Even and odd signals



 All signals can be represented as the sum of an even signal and an odd signal

$$x(t) = \frac{1}{2} \left[ x(t) + x(-t) \right] + \frac{1}{2} \left[ x(t) - x(-t) \right] = x_e(t) + x_o(t)$$

Signal characteristics

- The characterics of even and odd signals (Can you show them?)
  - The sum of two even signals is even.
  - The sum of two odd signals is odd.
  - The sum of an even signal and an odd signal is neither even nor odd.
  - The product of two even signals is even.
  - The product of two odd signals is even.
  - The product of an even signal and an odd signal is odd.

#### Periodic signals

Definition: periodic signal

A signal x(t) is periodic if

$$\forall t, \quad x(t) = x(t+T), \quad T > 0$$

- The constant T is the period.
- By definition, a periodic function satisfies the equation

$$x(t) = x(t + nT)$$

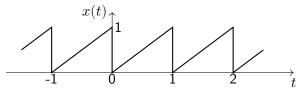
where n is any integer.

• The minimum value of the period T > 0 that satisfies the above definition is called the fundamental period of the signal and denoted as  $T_0$ . The fundamental frequency is given by

$$f_0 = \frac{1}{T_0} \mathrm{Hz}, \quad \omega = 2\pi f_0 = \frac{2\pi}{T_0} \mathrm{rad/s}$$

## Examples of periodic signals

- $x_c(t) = \cos \omega t$  and  $x_s(t) = \sin \omega t$
- The movement of a clock pendulum (it is *modeled* as sinusoids)
- A sawtooth wave



•  $x(t) = e^{\sin t}$  is periodic? Yes. Because for  $T = 2\pi$ 

$$x(t+T)=e^{\sin(t+2\pi)}=e^{\sin t}=x(t)$$

•  $x(t) = te^{\sin t}$  is periodic? No. There is no T satisfying

$$x(t+T) = (t+T)e^{\sin(t+T)} \stackrel{?}{=} te^{\sin t} = x(t)$$

#### Signal characteristics

## The sum of continuous-time periodic signals

 $x(t) = x_1(t) + x_2(t) + \dots + x_N(t), \quad \text{where } x_i\text{'s are periodic}$ 

- The sum of continuous-time periodic signals is periodic if and only if the ratios of the periods of the individual signals are ratios of integers.
- (If the sum is periodic), the fundamental period can be found as follows:
  - 1. Let  $T_{01}$  the period of the first signal and  $T_{0i}$  period of i-th signal (2  $\leq i \leq N$ )
  - 2. Convert each period ratio,  $T_{01}/T_{0i}$  to an irreducible fraction
  - 3. Find  $k_0$ , the least common multiple of the denominator of the fractions
  - 4. Then, the fundamental period of the sum of signals is  $T_0 = k_0 T_{01}. \label{eq:tau}$



$$x(t) = x_1(t) + x_2(t) + x_3(t) = \cos(3.5t) + \sin(2t) + 2\cos\left(\frac{7t}{6}\right)$$

• x(t) is periodic?

$$\begin{split} T_{01} &= \frac{2\pi}{\omega_1} = \frac{2\pi}{3.5}, \ T_{02} = \frac{2\pi}{\omega_2} = \frac{2\pi}{2}, \ T_{03} = \frac{2\pi}{\omega_3} = \frac{2\pi}{7/6} \\ \Rightarrow & \frac{T_{01}}{T_{02}} = \frac{2}{3.5} = \frac{4}{7}, \ \frac{T_{01}}{T_{03}} = \frac{7/6}{3.5} = \frac{1}{3} \end{split}$$

Both are ratios of integers; therefore, x(t) is periodic.

• What is fundamental period? Since the LCM of the denominators is 21,

$$T_0 = 21 \times \frac{2\pi}{3.5} = 12\pi(s)$$

#### Continuous-time signals and systems I

Review of last lecture

Transformations of continuous-time signals Time transformation Amplitude transformation

Signal characteristics Even and odd signals Periodic signals

Common signals in engineering Exponential function

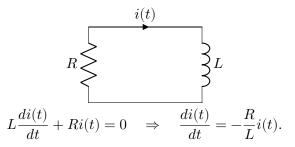
Common signals in engineering

#### Exponential function: introduction

• A signal whose time rate of change is directly proportional to the signal itself

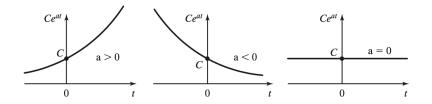
$$\frac{dx(t)}{dt} = ax(t) \quad \Rightarrow \quad x(t) = Ce^{at}$$

• RL circuit



• Parameters C and a can be complex.

#### $Ce^{at}$ : Both C and a real



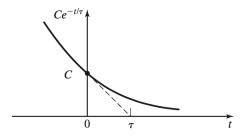
• For a < 0, we express the exponentials as

$$x(t) = Ce^{at} = Ce^{-t/\tau}, \quad \tau > 0$$

where  $\tau$  is called the time constant of the exponential.

Common signals in engineering

• The meaning of time constant



• The derivative of x(t) at t = 0 is given by

$$\left.\frac{dx(t)}{dt}\right|_{t=0} = \left.-\frac{C}{\tau}e^{-t/\tau}\right|_{t=0} = -\frac{C}{\tau}.$$

If the signal continued to decay from t = 0 at this rate, it would be zero at  $t = \tau$ .

• Actually, the value of the signal at  $t = \tau$  is equal to  $Ce^{-1} = 0.368C$ .  $\rightsquigarrow$  The signal has decayed to 36.8% of its amplitude after  $\tau$  seconds.

 $Ce^{at}$ : C complex, a imaginary

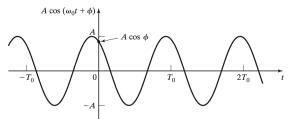
$$x(t)=Ce^{at};\ C=Ae^{j\phi}=A\angle\phi,\ a=j\omega_0$$

• x(t) can be expressed as

$$\begin{split} x(t) &= A e^{j\phi} e^{j\omega_0 t} = A e^{j(\omega_0 t + \phi)} \\ &= A \cos(\omega_0 t + \phi) + jA \sin(\omega_0 t + \phi) \end{split}$$

The sinusoids are periodic, so the x(t) is also periodic

• A plot of the real part of x(t)



#### Harmonically related complex exponentials

Harmonically related complex exponentials are a set of functions with frequencies related by integers, of the form

$$x_k(t)=A_ke^{jk\omega_0t},\ k=\pm 1,\pm 2,\ldots$$

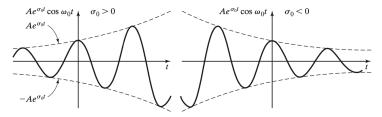
 The harmonically related complex exponentials will be used extensively when we study the Fourier series respresentation of periodic signals.  $Ce^{at}$ : Both C and a complex

$$x(t)=Ce^{at};\ C=Ae^{j\phi},\ a=\sigma_0+j\omega_0$$

• x(t) can be expressed as

$$\begin{aligned} x(t) &= Ae^{j\phi}e^{(\sigma_0 + j\omega_0)t} = Ae^{\sigma_0 t}e^{j(\omega_0 t + \phi)} \\ &= \underbrace{Ae^{\sigma_0 t}\cos(\omega_0 t + \phi)}_{Re[x(t)]} + j\underbrace{Ae^{\sigma_0 t}\sin(\omega_0 t + \phi)}_{Im[x(t)]} \end{aligned}$$

• A plot of the real part of x(t)



#### Common signals in engineering