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Introduction

• In one sense, discrete-time systems are easier to analyze and
design

• Difference equations are easier to solve than are differential
equations

• In a different sense, discrete-time systems are more difficult to
analyze and design

• The system characteristics are periodic in frequency.
• In this course, we consider only discrete-time systems that are

both linear and time invariant, which is referred to as
discrete-time LTI systems.
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Impulse representation of discrete-time signals
• Example

𝑛

𝑥[𝑛]

1

2

3

-3 -2 -1 0 1 2 3

⋯ ⋯
𝑛

𝑥−1[𝑛]

1

2

3

-3 -2 -1 0 1 2 3

⋯ ⋯

𝑛

𝑥0[𝑛]

1

2

3

-3 -2 -1 0 1 2 3

⋯ ⋯
𝑛

𝑥1[𝑛]

1

2

3

-3 -2 -1 0 1 2 3

⋯ ⋯

𝑥[𝑛] = 𝑥[−1]𝛿[𝑛 + 1] + 𝑥[0]𝛿[𝑛] + 𝑥[1]𝛿[𝑛 − 1]
• In general,

𝑥[𝑛] =
∞

∑
𝑘=−∞

𝑥[𝑘]𝛿[𝑛 − 𝑘]
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Convolution sum

• Impulse reponse

System
𝛿[𝑛] ℎ[𝑛]

𝛿[𝑛] → ℎ[𝑛]

• The derivation for convolution sum
• Time-invariance means 𝛿[𝑛−𝑘] → ℎ[𝑛−𝑘]
• Linearity means 𝑥[𝑘]𝛿[𝑛 − 𝑘] → 𝑥[𝑘]ℎ[𝑛 − 𝑘]
• The signal can be expressed with impulse functions as

𝑥[𝑛] = ∑∞
𝑘=−∞ 𝑥[𝑘]𝛿[𝑛 − 𝑘]

• Therefore,

𝑥[𝑛] =
∞

∑
𝑘=−∞

𝑥[𝑘]𝛿[𝑛 − 𝑘]

→ 𝑦[𝑛] =
∞

∑
𝑘=−∞

𝑥[𝑘]ℎ[𝑛 − 𝑘] = 𝑥[𝑛] ∗ ℎ[𝑛]
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Convolution sum with impulse function
• Convolution sum with impulse function

𝛿[𝑛] ∗ 𝑔[𝑛 − 𝑛0] = 𝛿[𝑛 − 𝑛0] ∗ 𝑔[𝑛] = 𝑔[𝑛 − 𝑛0]
• Do not confuse convolution with multiplication

𝛿[𝑛]𝑔[𝑛 − 𝑛0] = 𝑔[−𝑛0]𝛿[𝑛]
and

𝛿[𝑛 − 𝑛0]𝑔[𝑛] = 𝑔[𝑛0]𝛿[𝑛 − 𝑛0]

• (Derivation) By definition,

𝛿[𝑛] ∗ 𝑔[𝑛 − 𝑛0] =
∞

∑
𝑘=−∞

𝑔[𝑘 − 𝑛0]𝛿[𝑛 − 𝑘] = 𝑔[𝑛 − 𝑛0]

Also,

𝛿[𝑛 − 𝑛0] ∗ 𝑔[𝑛] =
∞

∑
𝑘=−∞

𝛿[𝑘 − 𝑛0]𝑔[𝑛 − 𝑘] = 𝑔[𝑛 − 𝑛0]
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Impulse response (FIR)

• A moving-average filter which averages the last three inputs:

𝑦[𝑛] = (𝑥[𝑛] + 𝑥[𝑛 − 1] + 𝑥[𝑛 − 2])/3

• The impulse response for this system is

ℎ[𝑛] = (𝛿[𝑛] + 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2])/3

𝑛

ℎ[𝑛]
⋯ ⋯1/3

-1 0 1 2 3

• This is a finite impulse response (FIR) system.
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System response by convolution sum I
• For the system in the previous slide, let the input be

𝑛

𝑥[𝑛]

⋯ ⋯3

6

0 1 2 3 4

• The signal 𝑥[𝑛 − 𝑘] and ℎ[𝑘] are

𝑘

6
4.5

3⋯ ⋯
𝑛 − 4 𝑛 − 3 𝑛 − 2 𝑛 − 1 𝑛

𝑥[𝑛 − 𝑘]

𝑘

ℎ[𝑘]

⋯ ⋯

1/3

-3 -2 -1 0 1 2 3
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System response by convolution sum II

• For 𝑛 = 0,

𝑘

ℎ[𝑘]

⋯ ⋯

1/3

-3 -2 -1 0 1 2 3

𝑘

𝑥[0 − 𝑘]
6

4.5
3⋯ ⋯

-3 -2 -1 0 1 2 3

𝑦[0] =
∞

∑
𝑘=−∞

𝑥[0 − 𝑘]ℎ[𝑘] = 0.
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System response by convolution sum III

• For 𝑛 = 1,

𝑘

ℎ[𝑘]

⋯ ⋯

1/3

-3 -2 -1 0 1 2 3

𝑘

𝑥[1 − 𝑘]
6

4.5
3⋯ ⋯

-3 -2 -1 0 1 2 3

𝑦[1] =
∞

∑
𝑘=−∞

𝑥[1 − 𝑘]ℎ[𝑘] = 1.
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System response by convolution sum IV

• For 𝑛 = 2,

𝑘

ℎ[𝑘]

⋯ ⋯

1/3

-3 -2 -1 0 1 2 3

𝑘

𝑥[2 − 𝑘]
6

4.5
3⋯ ⋯

-3 -2 -1 0 1 2 3

𝑦[2] =
∞

∑
𝑘=−∞

𝑥[2 − 𝑘]ℎ[𝑘] = 4.5 ⋅ 1/3 + 3 ⋅ 1/3 = 2.5.
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System response by convolution sum V

• Using the same procedure, we see that
𝑦[3] = 4.5, 𝑦[4] = 3.5, 𝑦[5] = 2, and 𝑦[𝑛] = 0, for 𝑛 > 5.

𝑛

𝑦[𝑛]

1

2.5

4.5

3.5

2

⋯ ⋯
-1 0 1 2 3 4 5 6

𝑦[𝑛] =𝛿[𝑛 − 1] + 2.5𝛿[𝑛 − 2] + 4.5𝛿[𝑛 − 3]
+ 3.5𝛿[𝑛 − 4] + 2𝛿[𝑛 − 5].

Convolution for Discrete-time Systems 13 / 45 .



Impulse response (IIR) I

• Consider the following system

+ 𝐷

𝑎

𝑥[𝑛]
𝑦[𝑛]

𝑎𝑦[𝑛 − 1]

𝑦[𝑛]

𝑦[𝑛] = 𝑎𝑦[𝑛 − 1] + 𝑥[𝑛]
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Impulse response (IIR) II

• The impulse response can be obtained by applying a unit
impulse function, with 𝑥[0] = 1 and 𝑥[𝑛] = 0, 𝑛 ≠ 0.

𝑦[0] = ℎ[0] = 𝑎𝑦[−1] + 𝑥[0] = 𝑎(0) + 1 = 1,
𝑦[1] = ℎ[1] = 𝑎𝑦[0] + 𝑥[1] = 𝑎(1) + 0 = 𝑎,
𝑦[2] = ℎ[2] = 𝑎𝑦[1] + 𝑥[2] = 𝑎(𝑎) + 0 = 𝑎2,
𝑦[3] = ℎ[3] = 𝑎𝑦[2] + 𝑥[3] = 𝑎(𝑎2) + 0 = 𝑎3,

⋮

hence,

ℎ[𝑛] = {𝑎𝑛, 𝑛 ≥ 0
0, 𝑛 < 0 = 𝑎𝑛𝑢[𝑛]

• This is an infinite impulse response (IIR) system.
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Step response of a discrete system

• Suppose that ℎ[𝑛] = (0.6)𝑛𝑢[𝑛] and 𝑥[𝑛] = 𝑢[𝑛]. Then, the
output signal is given by

𝑦[𝑛] =
∞

∑
𝑘=−∞

𝑥[𝑛 − 𝑘]ℎ[𝑘]

=
∞

∑
𝑘=−∞

𝑢[𝑛 − 𝑘](0.6)𝑘𝑢[𝑘]

=
𝑛

∑
𝑘=0

(0.6)𝑘 = 1 − (0.6)𝑛+1

1 − 0.6 = 2.5[1 − (0.6)𝑛+1], 𝑛 ≥ 0
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Properties of Convolution

• Commutative property

𝑥[𝑛] ∗ ℎ[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛]

• Associative property

(𝑓[𝑛] ∗ 𝑔[𝑛]) ∗ ℎ[𝑛] = 𝑓[𝑛] ∗ (𝑔[𝑛] ∗ ℎ[𝑛])

• Distributive property

𝑥[𝑛] ∗ ℎ1[𝑛] + 𝑥[𝑛] ∗ ℎ2[𝑛] = 𝑥[𝑛] ∗ (ℎ1[𝑛] + ℎ2[𝑛])
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Memory

• A memoryless (static) system is one whose current value of
output depends on only the current value of input.

• Expanding the convolution sum for a memoryless system, it
can be seen that

𝑦[𝑛] =
∞

∑
𝑘=−∞

𝑥[𝑛 − 𝑘]ℎ[𝑘]

= ⋯ + 𝑥[𝑛 + 2]ℎ[−2] + 𝑥[𝑛 + 1]ℎ[−1]
+ 𝑥[𝑛]ℎ[0] + 𝑥[𝑛 − 1]ℎ[1] + ⋯ = ℎ[0]𝑥[𝑛]

That is, ℎ[𝑛] must be zero for 𝑛 ≠ 0 ⇝ ℎ[𝑛] = 𝐾𝛿[𝑛] where
𝐾 is a constant.
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Invertibility

• A system is invertible if its input can be determined from its
output.

• A discrete-time LTI system is invertible if there exists a
function ℎ𝑖[𝑛] such that

ℎ[𝑛] ∗ ℎ𝑖[𝑛] = 𝛿[𝑛]

ℎ[𝑛] ℎ𝑖[𝑛]
𝑥[𝑛] 𝑦[𝑛] = 𝑥[𝑛]

• The finding the impulse response ℎ𝑖[𝑛] can be solved with the
use of the z-transform
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Causality
• A system is causal if the current value of the output depends

on only the current value and past value of the input.
• Suppose that the input for a causal system is 𝛿[𝑛]. Its output

is ℎ[𝑛], which must be zero for 𝑛 < 0.
• The convolution sum for a causal LTI system can be expressed

as

𝑦[𝑛] =
∞

∑
𝑘=−∞

𝑥[𝑛 − 𝑘]ℎ[𝑘]

= 𝑥[𝑛]ℎ[0] + 𝑥[𝑛 − 1]ℎ[1] + 𝑥[𝑛 − 2]ℎ[2] + ⋯

=
∞

∑
𝑘=0

𝑥[𝑛 − 𝑘]ℎ[𝑘]

or, alternatively,

𝑦[𝑛] =
𝑛

∑
𝑘=−∞

𝑥[𝑘]ℎ[𝑛 − 𝑘].
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Stability
• A system is BIBO stable if the output remains bounded for

any bounded input.
• If |𝑥[𝑛]| ≤ 𝑀 ,

|𝑦[𝑛]| = ∣
∞

∑
𝑘=−∞

𝑥[𝑛 − 𝑘]ℎ[𝑘]∣ ≤
∞

∑
𝑘=−∞

|𝑥[𝑛 − 𝑘]ℎ[𝑘]|

=
∞

∑
𝑘=−∞

|𝑥[𝑛 − 𝑘]||ℎ[𝑘]| ≤
∞

∑
𝑘=−∞

𝑀|ℎ[𝑘]| = 𝑀
∞

∑
𝑘=−∞

|ℎ[𝑘]|

• It is sufficient that for 𝑦[𝑛] to be bounded,
∞

∑
𝑘=−∞

|ℎ[𝑘]| < ∞ (absolutely summable)

• This condition is also necessary condition.
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Example for properties of LTI systems

• Let ℎ[𝑛] = (1
2)𝑛𝑢[𝑛].

• This system
• has memory (is dynamic), since ℎ[𝑛] ≠ 𝐾𝛿[𝑛].
• is causal, since ℎ[𝑛] = 0 for 𝑛 < 0.
• is stable, because

∞
∑

𝑛=−∞
|ℎ[𝑛]| =

∞
∑
𝑛=0

(1
2)

𝑛
= 2 < ∞.
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Unit step response
• The unit step response for an LTI system with the impulse

response ℎ[𝑛] is

𝑠[𝑛] =
∞

∑
𝑘=−∞

𝑢[𝑛 − 𝑘]ℎ[𝑘] =
𝑛

∑
𝑘=−∞

ℎ[𝑘].

• For example, if the impulse response is ℎ[𝑛] = (0.6)𝑛𝑢[𝑛], the
unit step response is

𝑠[𝑛] =
𝑛

∑
𝑘=0

(0.6)𝑘 = 1 − (0.6)𝑛+1

1 − 0.6 𝑢[𝑛] = 2.5(1 − (0.6)𝑛+1)𝑢[𝑛]

• Note that

𝑠[𝑛] − 𝑠[𝑛 − 1] =
𝑛

∑
𝑘=−∞

ℎ[𝑘] −
𝑛−1
∑

𝑘=−∞
ℎ[𝑘] = ℎ[𝑛].

Properties of Discrete-time LTI Systems 24 / 45 .



Discrete-time LTI Systems

Introduction

Convolution for Discrete-time Systems

Properties of Discrete-time LTI Systems

Difference Equation Models

System Response for Complex-Exponential Inputs

Difference Equation Models 25 / 45 .



Difference-equation models
• An LTI discrete-time systems are usually modeled by linear

difference equations with constant coefficients.
• For example, a first-order linear difference equation is

𝑦[𝑛] = 𝑎𝑦[𝑛 − 1] + 𝑏𝑥[𝑛].

where 𝑎 and 𝑏 are constants.
• The general form of an 𝑁th-order linear difference equation

with constant coefficients is, with 𝑎0 ≠ 0,

𝑎0𝑦[𝑛] + 𝑎1𝑦[𝑛 − 1] + ⋯ + 𝑎𝑁𝑦[𝑛 − 𝑁]
= 𝑏0𝑥[𝑛] + 𝑏1𝑥[𝑛 − 1] + ⋯ + 𝑏𝑀𝑥[𝑛 − 𝑀]

or in a more compact form:
𝑁

∑
𝑘=0

𝑎𝑘𝑦[𝑛 − 𝑘] =
𝑀

∑
𝑘=0

𝑏𝑘𝑥[𝑛 − 𝑘], 𝑎0 ≠ 0. (1)
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Solutions of difference equations

• The classical method for solutions of difference equation (1)
require that the general solution be expressed as

𝑦[𝑛] = 𝑦𝑐[𝑛] + 𝑦𝑝[𝑛]

where 𝑦𝑐[𝑛] is called the complementary function (natural
response) and 𝑦𝑝[𝑛] is a particular solution(forced response).
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Natural response I
• The natural response satisfies the homogeneous equation

𝑎0𝑦[𝑛] + 𝑎1𝑦[𝑛 − 1] + ⋯ + 𝑎𝑁 [𝑛 − 𝑁] = 0 (2)

• Assume that the solution of this equation is of the form
𝑦𝑐[𝑛] = 𝐶𝑧𝑛. Then,

𝑦𝑐[𝑛] = 𝐶𝑧𝑛,
𝑦𝑐[𝑛 − 1] = 𝐶𝑧𝑛−1 = 𝐶𝑧−1𝑧𝑛,
𝑦𝑐[𝑛 − 2] = 𝐶𝑧𝑛−2 = 𝐶𝑧−2𝑧𝑛

𝑦𝑐[𝑛 − 𝑁] = 𝐶𝑧𝑛−𝑁 = 𝐶𝑧−𝑁𝑧𝑛.

• Substituting these terms into (2) yields

𝑎0𝑧𝑁 + 𝑎1𝑧𝑁−1 + ⋯ + 𝑎𝑁−1𝑧 + 𝑎𝑁 = 0

which is called the characteristic equation.
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Natural response II

• The characteristic equation may be factored as

𝑎0(𝑧 − 𝑧1)(𝑧 − 𝑧2) ⋯ (𝑧 − 𝑧𝑁) = 0.

• If there is no repeated roots, the solution of eq. (2) may be
expressed as

𝑦𝑐[𝑛] = 𝐶1𝑧𝑛
1 + 𝐶2𝑧𝑛

2 + ⋯ + 𝐶𝑁𝑧𝑛
𝑁 .

where 𝐶1, 𝐶2, … , 𝐶𝑁 are evaluated later.
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Forced response I

• The forced response is any function that satisfies eq. (1).
• Assume that the forced response is the sum of functions of

the mathematical form of the excitation 𝑥[𝑛] and the delayed
excitation 𝑥[𝑛 − 𝑘] that differ in form from 𝑥[𝑛].

• 𝑥[𝑛] = 3(0.2)𝑛 ⇝ 𝑦𝑝[𝑛] = 𝑃(0.2)𝑛

• 𝑥[𝑛] = 𝑛3 ⇝ 𝑦𝑝[𝑛] = 𝑃1 + 𝑝2𝑛 + 𝑃3𝑛2 + 𝑃4𝑛3

• 𝑥[𝑛] = cos 2𝑛 ⇝ 𝑦𝑝[𝑛] = 𝑃1 cos 2𝑛 + 𝑃2 sin 2𝑛
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Example for difference equation solution

𝑦[𝑛] − 0.6𝑦[𝑛 − 1] = 𝑥[𝑛] = 4𝑢[𝑛]

• The characteristic equation is

𝑧 − 0.6 = 0 ⇒ 𝑧 = 0.6

So, the natural response is 𝑦𝑐[𝑛] = 𝐶(0.6)𝑛.
• Because the forcing input is constant, the forced response is

chosen as 𝑦𝑝[𝑛] = 𝑃 . Substituting this function into the
difference equation yields

𝑃 − 0.6𝑃 = 4 ⇒ 𝑃 = 10,

• So the general solution is

𝑦[𝑛] = 𝑦𝑐[𝑛] + 𝑦𝑝[𝑛] = 𝐶(0.6)𝑛 + 10.
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Comments on the solutions

• The natural response is dependent only on the structure of
the system (the left side of eq. (1). It is also called the
unforced response, or the zero-input response.

• However, the value of unknown 𝐶𝑖’s are the functions of both
the excitation and the initial conditions.

• The forced response is a function of the system structure and
of the excitation, but is independent of the initial conditions.
It is also called the zero-state response (zero-state means zero
initial condition).

• For almost all models of physical systems, the natural response
goes to zero with increasing time, and then only the forced
response remains (under the assumption of BIBO stability).
⇝ The forced response is sometimes called the steady-state
response and the natural response the transient response.
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The natural response in case of repeated roots
• The natural response form should be changed in the general

case of an 𝑟th-order root 𝑧𝑖 in the characteristic equation. If
the characteristic equation is factored into

𝑎0(𝑧 − 𝑧𝑖)𝑟(𝑧 − 𝑧𝑘) ⋯ = 0

The term in the natural response for this root is

(𝐶1 + 𝐶2𝑛 + 𝐶3𝑛2 + ⋯ + 𝐶𝑟𝑛𝑟−1)𝑧𝑛
𝑖 .

• For example, suppose that the characteristic equation of 4-th
order difference equation is

(𝑧 − 𝑧1)3(𝑧 − 𝑧2) = 0,

then the natural response should be the form

𝑦𝑐[𝑛] = (𝐶1 + 𝐶2𝑛 + 𝐶3𝑛2)𝑧𝑛
1 + 𝐶4𝑧𝑛

4 .
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Solution by iteration
• A difference equation can always be solved by iteration.

𝑦[𝑛] = −
𝑁

∑
𝑘=1

𝑎𝑘𝑦[𝑛 − 𝑘] +
𝑀

∑
𝑘=0

𝑏𝑘𝑥[𝑛 − 𝑘]

with the initial conditions 𝑦[𝑚], 𝑦[𝑚 + 1], … , 𝑦[𝑚 + 𝑁 − 1].
• For example, let 𝑚 = 0 and you get

𝑦[𝑁] = − 𝑎1𝑦[𝑁 − 1] − 𝑎2𝑦[𝑁 − 2] − ⋯ − 𝑎𝑁𝑦[0]
+ 𝑏0𝑥[𝑁] + 𝑏1𝑥[𝑁 − 1] + ⋯ + 𝑏𝑀𝑥[𝑁 − 𝑀]

and then 𝑦[𝑁 + 1], 𝑦[𝑁 + 2], ….
• The iterative solution does not result in 𝑦[𝑛] as an explicit

function of 𝑛 (like the classical solution), but is easily
implemented on a digital computer (system simulation).
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Terms in the natural response

• The general term in the natural response is given by 𝐶𝑖𝑧𝑛
𝑖 ,

where 𝑧𝑛
𝑖 is called a system mode.

• When 𝑧𝑖 is real and positive, let 𝑧𝑖 = 𝑒Σ𝑖 with Σ𝑖 real, and

𝐶𝑖𝑧𝑛
𝑖 = 𝐶𝑖(𝑒Σ𝑖)𝑛 = 𝐶𝑖𝑒Σ𝑖𝑛

• When 𝑧𝑖 is complex, let 𝑧𝑖 = 𝑒Σ𝑖+𝑗Ω𝑖 . Since the natural
response must be real, two of the terms of 𝑦𝑐[𝑛] can be
expressed as

𝐶𝑖𝑧𝑛
𝑖 + 𝐶∗

𝑖 (𝑧∗
𝑖 )𝑛 = |𝐶𝑖|𝑒𝑗𝛽𝑖𝑒Σ𝑖𝑛𝑒𝑗Ω𝑖𝑛 + |𝐶𝑖|𝑒−𝑗𝛽𝑖𝑒Σ𝑖𝑛𝑒−𝑗Ω𝑖𝑛

= 2|𝐶𝑖|𝑒Σ𝑖𝑛 cos(Ω𝑖𝑛 + 𝛽𝑖).
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Stability

• The general solution is given by

𝑦[𝑛] = 𝑦𝑐[𝑛] + 𝑦𝑝[𝑛]

• 𝑦𝑝[𝑛] is of the mathematical form as the system input 𝑥[𝑛].
⇝ If 𝑥[𝑛] is bounded, 𝑦𝑝[𝑛] is also bounded.

• The general term of 𝑦𝑐[𝑛] is 𝐶𝑖𝑧𝑛
𝑖 , where 𝑧𝑖 is a root of the

sytem characteristic equation. ⇝ The magnitude of this term
is given by |𝐶𝑖||𝑧𝑖|𝑛. ⇝ If |𝑧𝑖| < 1, the magnitude of the term
approaches zero as 𝑛 → ∞.

• Thus, the necessary and sufficient condition that a causal
discrete-time LTI system is BIBO stable is that |𝑧𝑖| < 1.
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Linearity

• Consider two real inputs and outputs for an LTI system, that
is,

𝑥𝑖[𝑛] → 𝑦𝑖[𝑛], 𝑖 = 1, 2
• Because of the linearity,

𝑎1𝑥1[𝑛] + 𝑎2𝑥2[𝑛] → 𝑎1𝑦1[𝑛] + 𝑎2𝑦2[𝑛]

• If we choose 𝑎1 = 1 and 𝑎2 = 𝑗 =
√

−1, then

𝑥1[𝑛] + 𝑗𝑥2[𝑛] → 𝑦1[𝑛] + 𝑗𝑦2[𝑛].

• For a complex input function to an LTI system, the real part
of the input produces the real part of the output, and the
imaginary part of the input produces the imaginary part of the
output.
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Complex inputs for LTI systems I
• Consider the steady-state system response to the

complex-exponential input

𝑥[𝑛] = 𝑋𝑧𝑛 (3)

where 𝑋 and 𝑧 can be complex.
• The LTI system is modeled by 𝑁th-order difference equation

𝑁
∑
𝑘=0

𝑎𝑘𝑦[𝑛 − 𝑘] =
𝑁

∑
𝑘=0

𝑏𝑘𝑥[𝑛 − 𝑘] (4)

• The forced response (steady-state response) is of the same
mathematical form. Hence

𝑦𝑠𝑠[𝑛] = 𝑌 𝑧𝑛 (5)
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Complex inputs for LTI systems II

• Substituting eq. (3) and (5) into eq. (4) results in

(𝑎0 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑁𝑧−𝑁)𝑌 𝑧𝑛

= (𝑏0 + 𝑏1𝑧−1 + ⋯ + 𝑏𝑁𝑧−𝑁)𝑋𝑧𝑛

, from which 𝑌 is given by

𝑌 = [ 𝑏0 + 𝑏1𝑧−1 + ⋯ + 𝑏𝑁𝑧−𝑁

𝑎0 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑁𝑧−𝑁 ] 𝑋 = 𝐻(𝑧)𝑋.

Here, 𝐻(𝑧) is called a transfer function.
• In summary,

𝑥[𝑛] = 𝑋𝑧𝑛
1 → 𝑦𝑠𝑠[𝑛] = 𝑋𝐻(𝑧1)𝑧𝑛

1 .
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Example for transfer function

• The difference equation of the 𝛼-filter

𝑦[𝑛] − (1 − 𝛼)𝑦[𝑛 − 1] = 𝛼𝑥[𝑛]

• The transfer function

𝐻(𝑧) = 𝛼
1 − (1 − 𝛼)𝑧−1 = 𝛼𝑧

𝑧 − (1 − 𝛼)

𝛼𝑧
𝑧−(1−𝛼)

𝑥[𝑛] 𝑦[𝑛]
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Sinusoidal inputs for LTI systems

• Consider the steady-state system response to the sinusoidal
input

𝑥[𝑛] = 𝑋𝑧𝑛
1 = |𝑋|𝑒𝑗𝜙𝑒𝑗Ω1𝑛

= |𝑋| cos(Ω1𝑛 + 𝜙) + 𝑗|𝑋| sin(Ω1𝑛 + 𝜙)

• Let 𝐻(𝑧1) = |𝐻(𝑒Ω1)|𝑒𝑗𝜃𝐻 , the steady-state output is

𝑦𝑠𝑠[𝑛] = 𝑋𝐻(𝑒𝑗Ω1)𝑒𝑗Ω1𝑛 = |𝑋||𝐻(𝑒𝑗Ω1)|𝑒𝑗(Ω1𝑛+𝜙+𝜃𝐻)

= |𝑋||𝐻(𝑒𝑗Ω1)| [cos(Ω1𝑛 + 𝜙 + 𝜃𝐻) + 𝑗 sin(Ω1𝑛 + 𝜙 + 𝜃𝐻)]

• Since the real part of the input signal produces the real part
of the output signal,

|𝑋| cos(Ω1𝑛 + 𝜙) → |𝑋||𝐻(𝑒𝑗Ω1)| cos(Ω1𝑛 + 𝜙 + 𝜃𝐻).
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Example for sinusoidal response

0.1𝑧
𝑧−0.9

𝑥[𝑛] = 5 cos(0.01𝑛 + 20∘) 𝑦𝑠𝑠[𝑛]

• Calculate the value of transfer function of 𝑧 = 𝑒𝑗Ω = 𝑒𝑗0.01

𝐻(𝑧)∣
𝑧=𝑒𝑗0.01

= 0.1(𝑒𝑗0.01)
𝑒𝑗0.01 − 0.9

= 0.1∠0.573∘

0.99995 + 𝑗0.01 − 0.9
= 0.1∠0.573∘

0.1004∠5.71∘ = 0.996∠ − 5.14∘

• So the steady-state output is

𝑦𝑠𝑠[𝑛] = 5(0.996) cos(0.01𝑛 + 20∘ − 5.14∘)
= 4.98 cos(0.01𝑛 + 14.86∘)
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Impulse response and transfer function

• For 𝑥[𝑛] = 𝑧𝑛, the system response is

𝑦𝑠𝑠[𝑛] =
∞

∑
𝑘=−∞

ℎ[𝑘]𝑥[𝑛−𝑘] =
∞

∑
𝑘=−∞

ℎ[𝑘]𝑧𝑛−𝑘 = 𝑧𝑛
∞

∑
𝑘=−∞

ℎ[𝑘]𝑧−𝑘

• From the system response for complex exponential input,

𝑦𝑠𝑠[𝑛] = 𝐻(𝑧)𝑧𝑛 = 𝑧𝑛
∞

∑
𝑘=−∞

ℎ[𝑘]𝑧−𝑘

So,

𝐻(𝑧) =
∞

∑
𝑘=−∞

ℎ[𝑘]𝑧−𝑘
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Homeworks

• Problems at the end of the chapter
• 10.6
• 10.11
• 10.14
• 10.19
• 10.23 (a)
• 10.25
• 10.34 (a) (b)
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